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Abstract

Tethered spacecraft possess unique dynamic characteristics which make them advan-

tageous for certain classes of experiments. One use for which tethers are particularly

well suited is to provide an isolated platform for space-borne observatories. The ad-

vantages of tethering a pointing platform 1 or 2 km from a space shuttle or space

station are that, compared to placing the observatory on the parent spacecraft, vi-

brational disturbances are attenuated and contamination is eliminated.

In practice, all satellites have some requirement on the attitude control of the

spacecraft, and tethered satellites are no exception. It has previously been shown

that conventional means of performing attitude control for tethered satellites are in-

sufficient for any mission with pointing requirements more stringent than about 1 deg.

This is due mainly to the relatively large force applied by the tether to the space-

craft. A particularly effective method of implementing attitude control for tethered

satellites is to use this tether tension force to generate control torques by moving the

tether attach point relative to the sub-satellite center of mass. A demonstration of

this attitude control technique on an astrophysical pointing platform has been pro-

posed for a Space Shuttle flight test project and is referred to as the Kinetic Isolation

Tether Experiment (KITE).

The current work is concerned with the theoretical development of both a large

angle stew and long term, precision pointing control algorithm for tethered satellites,

and the simulation of the KITE mission in an Earth laboratory environment. To

that end, a scaled, one-dimensional, air-bearing supported laboratory simulator of

the KITE satellite configuration has been constructed and is described in detail. The

system equations are derived and a suitable control law is described. The precision
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control algorithm consists of a Linear Quadratic Gaussian, full-state feedback control

law in conjunction with a multi-variable Kalman filter. The control algorithm has

been shown to regulate the vehicle orientation to within 0.60 arcsec RMS. This level

of precision was achieved only after including a mass center estimator and accurately

modeling the effects that the nonlinear actuator added to the system model.

In addition, a tether dynamics simulator has been constructed in order to imple-

ment the natural dynamic behavior of a 2 km long tether in the earth laboratory

environment. The tether simulator is used to test the ability of the control algo-

rithm to regulate the air-bearing vehicle orientation in the presence of variations in

the tether tension magnitude and direction. Results of experiments show that, for

the level of variation in tension magnitude and direction expected on orbit, neither

longitudinal nor in-plane lateral tether dynamics will prevent the control algorithm

from achieving long term, precision attitude control on the order of 1 arcsec.
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Chapter 1

Introduction

The generic problem of the precision orientation control of space-borne objects ha]s

been the concern of mission planners and engineers since the dawn of the space-age.

Practically all space missions have some attitude control specification associated with

the desired mission design. Whether the entire space vehicle or simply a sub-system

(e.g., a camera or antenna) is of interest, the angular orientation of the constellation

must be regulated. In some instances, small angular tolerances are required in order

to achieve the desired mission. Over the years, a vast body of knowledge has been

accumulated which sufficiently solves the attitude control problem for conventional

spacecraft. As new, more complex, and less conventional satellite designs are explored

for their potential uses, new methods of performing the orientation control for these

new satellites must be developed. For new satellite designs, the conventional attitude

control methods can become too costly, too heavy, or too inefficient to implement in

an effective manner.

Tethered satellites are an excellent example of a potentially more complex, less

conventional satellite design. A tethered satellite constellation consists of two distinct

satellites (end masses) connected by a long (1-100 km), flexible cable (or tether). The

very long tether is responsible for unique dynamic characteristics which make teth-

ered satellites advantageous for certain classes of experiments. One use for which

tethers are particularly well suited is to provide an isolated platform for space-borne
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observatories. Typical space-based observatories will require a significant level of ori-

entation regulation. Previous authors have described a concept to generate attitude

control torques by varying the attachment of the tether on the sub-satellite. The

purpose of the current research is to construct a laboratory simulator (using compo-

nents similar to those expected in an orbital application) to test the control concept,

and to determine the effect variations of mission requirements, linearity assumptions,

and parameter variations will have on the ultimate performance of a tethered satellite

attitude control system based on a movable tether attach point.

The following sections will provide a detailed description of tethered satellites

and their proposed uses, the detailed discussion of the attitude control problem for a

tethered, space-based observatory, a summary of previous work with related results,

a description of the contributions the current research adds to the body of knowledge

for tethered spacecraft, and a brief reader's guide to summarize the following chapters.

1.1 Description of Tethered Satellites

The basic concept of a tethered satellite is close to 100 years old. In 1895, Tsiol-

kovsky, a Russian scientist, first proposed a tower at Earth's equator which would

reach beyond geo-synchronous orbit [1]. The purpose of the proposed tower was to

provide access to a weightless environment. This "Jack-in-the-Beanstalk" concept re-

mained relatively untouched until about 25 years ago when Sutton and Diederich [2]

performed a simple analysis of the required cable mass and strength to connect one

orbiting satellite above synchronous altitude and one orbiting satellite below syn-

chronous altitude. This concept is the fundamental configuration of most modern

tethered satellite constellations (except for the synchronous altitude requirement).

The configuration consists of two end masses (i.e., satellites) connected with a long

(1-100 km), flexible cable. The nominal configuration is such that the tether is aligned

with the local vertical direction for the orbiting system. In this orientation, the config-

uration is nominally stable due to gravity gradient forces. The gravity gradient forces

manifest themselves as a relative acceleration away from the mass center of the com-

bined system of the two end masses. Since the tether is holding the two end masses
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together, tension force is generated in the tether. This configuration and dynamic

environment is the basis for many of the proposed uses of tethered spacecraft.

The advantages of and proposed uses for satellites tethered from the Space Shuttle

and Space Station have been well documented by Bekey [3][4]. The advantages of

using tethered satellites arise from the unique dynamic characteristics associated with

their deployed configuration (e.g., the micro-gravity acceleration experienced on each

end mass, the tension in the tether, and the station-keeping gravity gradient forces).

The list of proposed uses includes:

• micro-gravity experiments,

• momentum transfer,

• electrodynamic conversion of energy,

• upper atmospheric research, and

• astrophysical pointing platforms.

Micro-gravity experiments can be performed relatively easily because of the micro-

gravity acceleration experienced by each of the end masses. The level of gravitational

field can be adjusted by varying the tether length or by crawling from one end mass

to the other along the tether. The possibility of momentum transfer arises due to

the fact that the upper end mass experiences a greater centrifugal than gravitational

force and the lower mass experiences a greater gravitational than centrifugal force.

The tether acts to hold the end masses in (relatively) close proximity and if the tether

would be cut, the upper mass would be boosted to a higher energy elliptic orbit and

the lower mass would be transferred to a lower energy elliptic orbit. Tether elec-

trodynamics arise when conducting material is used as the tether. The interaction

of the conducting tether with the Earth's magnetic field can generate electricity or

thrust for the tethered satellite. Upper atmospheric research can be easily conducted

with tethered satellites by placing the upper end mass in a 'normal' orbit and placing

the lower end mass in an orbit which penetrates the upper reaches of the Earth's at-

mosphere (which is currently accessible only for short periods of time with sounding
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rockets). Finally, tethered satellites are well suited to serve as astrophysical pointing

platforms because the tether provides vibration and contamination isolation from the

parent spacecraft, while maintaining a relatively close working proximity. In addition,

the (relatively) lightweight configuration of tethered spacecraft can be exploited to

generate artificial gravity. For man to spend long periods of time in a weightless en-

vironment, it is generally agreed that some form of artificial gravity will be necessary.

Connecting two end modules with a long tether and spinning the system currently

affords the most promising method to implement an artificial gravity spacecraft.

All of the above proposed uses of tethered satellites will have some requirement

on the attitude control of the end masses. Due to the high stability requirements,

the astrophysical pointing platform likely presents the smallest attitude control tol-

erances from the list of the proposed uses. As a result, it will serve as the motivating

application for the design of a precision attitude control algorithm and laboratory

simulator, both of which are the focus of this dissertation.

1.2 Astrophysical Observatory Control Problem

Recently, much interest has been shown in the concept of tethering space-borne ob-

servatories from the Space Shuttle or Space Station. The basic concept of tethering

astrophysical pointing platforms is presented by Lemke [5]. He qualitatively discusses

the fact that tethered observatories will provide contamination isolation from the par-

ent spacecraft and quantitatively designs a closed-loop attitude control system and

comments to the effectiveness of the vibration isolation provided by a typical tether.

The control algorithm he suggests makes use of a variable position tether attach point

in order to generate control torques. He also discusses a proposed Space Shuttle flight

test mission, called the Kinetic Isolation Tether Experiment (KITE), and presents a

preliminary design and mission plan.

In order to determine the exact level of orientation control necessary for an as-

trophysical observatory, Lemke, Powell, and He [6] present an analysis of these re-

quirements for a typical 1 m class astrophysical pointing platform. Based on optical

stability requirements, they determine that such a mission would require orientation
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control on the order of 1 arcsec. They also provide an analysis of different methods

to generate control torques and conclude that in order to achieve orientation control

on the order of 1 arcsec for a tethered satellite, conventional means are insufficient

and the control system must generate torques by varying the tether attach point

on the platform. This result arises because the force that the tether applies to the

sub-satellite is at least one order of magnitude greater than any other environmental

disturbing force. If the tether is not attached exactly at the sub-satellite mass center,

a conventional control algorithm will expend too much energy fighting this distur-

bance torque. In addition, it is virtually impossible to a priori determine the center

of mass location to arbitrary precision for any satellite, and tethered sub-satellites will

likely not be exceptions to this rule. These considerations lead directly to the need

to vary the tether attach point on the observatory platform. Further, the authors

also discuss the KITE flight test configuration and hardware. They suggest that the

mission include large angle slew maneuvers on the order of 30 deg and inertially fixed

pointing, to exhibit long term attitude regulation on the order of 1 arcsec.

The current research is designed to simulate the KITE flight test mission in a

laboratory environment. The goals of the research are to construct a laboratory sim-

ulator suitable for extensive testing, to design a control algorithm which can exhibit

both large angle slew and long term, high accuracy pointing maneuvers with the lab-

oratory simulator, to construct a tether dynamics simulator to determine the effect

that natural tether dynamics will have on the control algorithm, and to vary linearity

assumptions and system models to determine the robustness of the control design.

Finally, it should be noted that any future reference to the orbital case or orbital con-

ditions refers to the proposed Space Shuttle flight test of KITE and the conditions

expected throughout that mission.

1.3 Previous Work and Related Results

Interest in tethered satellites remained relatively subdued until the the 1960's. The

reason for the lack of interest is mainly that available materials did not possess suf-

ficient structural characteristics (they were either too heavy or too weak) to warrant
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the construction of long space tethers. Since then, however, numerous studies of teth-

ered satellite uses and dynamics have been presented in the open literature. The focus

of the studies concentrate on the analysis of station-keeping, the analysis of tether

materials, the analysis of deployment and retrieval, the description of experiments

with tethered satellites, and the detailed analysis of proposed uses. The following

section will provide a brief review of previous work on tethers and a description of

related results.

The studies which focus on the station-keeping phase of tethered satellite mis-

sions typically involve a dynamic analysis of the specific system and some conclusions

based on an analytic solution or computer simulation. Misra and Modi [7] compiled

an extensive survey of numerous dynamic analyses and their results. Many past stud-

ies can be classified by their treatment of the model used for the tether. The most

simple studies model the tether as massless and inextensible [8][9]. Including tether

mass adds one level of complexity and was discussed in relation to tether activities

on the Space Shuttle [10][11]. The most popular tether model consists of a massless

spring/damper and has been studied in great detail [12]-[19]. These studies consider

everything from simple, extensible dumbbell satellites to more complex orbiting, teth-

ered antennas. The general conclusions are that care must be taken when designing

tethered satellites because of the interaction between the flexible tether and orbital

perturbations. Massive, flexible cable models contain longitudinal as well as trans-

verse tether dynamics and have garnered a fair amount of research interest [20]-[24].

These research efforts concentrated on subjects related purely to the behavior of the

tether material, sub-satellite maneuverability by the use of transverse waves, and the

orbital stability of satellites with flexible tethers. Finally, the case of general, flexible

appendages has been studied in the context of the influence of spacecraft flexibility

and orbital motion [25]-[27]. Other dynamic complications can be added by including

extended end masses, as was performed to study the effect of damping which arises

from relative motion between the end masses and the tether [15][16]. Adding damp-

ing mechanisms between the tether and end masses helped reduce undesirable end

mass rotations. The effects of orbit eccentricity on tethered satellite station-keeping

have been studied in numerous contexts [13][17][21] [11][28]. In general, these studies
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found that orbit eccentricity will pump the pendular modes of the spacecraft, but

not significantly enough to be destabilizing. Finally, a number of studies included

coupling between motions which occur out-of-plane and in-plane (see, for example,

[17][21] and [27]). These researchers conclude that for motions which occur in the

linear region, out-of-plane dynamics are decoupled from in-plane dynamics.

Recently, a number of studies have considered the tether as a continuum, the

authors have employed various models to describe damping [29] [30][31]. These studies

have determined the natural frequencies and damping properties expected of long

space tethers. Most tether missions will have both a deployment and a retrieval

phase and considerable analysis has been performed to determine stable methods to

perform both tasks. Some of the station-keeping studies considered deployment in

addition to station-keeping [16][8][9][10][11]. Other studies have been solely devote_i

to the question of deployment, which is a dynamically stable process [32][26][21][33].

The unstable retrieval phase has been studied less frequently, however, a number

of authors have presented various methods to perform the retrieval. The methods

can be generally split into two groups: those that depend on tether length rate laws

[9][10][11][34] and those that depend on some sort of thruster augmentation alone [35]

or in combination with a rate law [36]. Kane [37] suggests a novel approach which

leaves the tether deployed while the sub-satellite crawls back to the parent.

The first (and only) flight experiments with tethered satellites were performed

during two Gemini missions in 1966 [1][38]. The mission plans for Gemini XI and

XII contained provisions to exhibit tethered satellite constellations. Both missions

connected a spent, unmanned Atlas-Agena rocket stage to the Gemini capsule with

approximately a 30 m polyester cable. The first mission exhibited a rotating concept

(as would be used to generate artificial gravity) and the second mission was deployed

in the gravity gradient stabilized configuration. In 1970, Austin and Bauer [39] report

on a series of experiments they performed with a laboratory simulator of a rotating,

cable-connected space station. Their hardware consisted of a rigid frame which sus-

pended a flexible cable and two end modules. The suspension system allows three

degrees of rotational freedom for each end mass and the frame can be rotated about

the system center of mass. Other than the current research and above examples, no
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flight test or laboratory work has been performed to exhibit any aspect of tethered

satellite behavior.

There have been numerous descriptions of proposed tethered satellite uses in the

open literature. A summary of proposed and continuing research projects has been

compiled by the NASA Office of Space Flight in the form of two handbooks related to

tethers in space [40][41]. Both handbooks serve as excellent references for all aspects

of tether fundamentals. A number of studies relate directly to KITE. As mentioned

previously (see Section 1.2) Lemke [5] and Lemke, Powell, and He [6] discuss the

advantages of tethered observatories, the need for sub-satellite tether attach point

motion to generate attitude control torques, a sample attitude control algorithm, and

results related to vibration isolation from the parent spacecraft. Lemke [42] reviews

and strengthens the previous derivations of the KITE project, this time related to

Space Station deployment, and adds a quantitative analysis of contamination isolation

for a tethered observatory. In support of the KITE project, two reports to NASA

Ames Research Center were prepared by Powell, Lemke, and He [43] and Powell,

He, and Schoder [44]. These reports summarize the findings of the researchers and

introduce many of the concepts and results contained in the other works. Also in

support of KITE, Stephenson [45] performed a detailed computer simulation of the

dynamics and control of a tethered observatory deployed from the Space Shuttle.

The goals of his work were to exhibit the six degree of freedom behavior of the KITE

sub-satellite along with a NASA model of the tether and Shuttle dynamics. He [31]

presents results which provide a method to model the longitudinal and lateral dynamic

behavior of long space-based tethers. In addition, He derives a three dimensional, six-

degree of freedom computer model and control algorithm based on generating control

moments by varying the tether attach point. Both researchers conclude that the

movable attach point control mechanism will, in fact, achieve orientation control on

the order of 1 arcsec.
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1.4 Contributions of Current Research

The research described in this dissertation has extended the current body of knowl-

edge surrounding tethered satellites in a number of areas. Most notably, the contri-

butions include:

The design and construction of an air-bearing supported, tethered satellite sim-

ulator suitable for laboratory testing, and the design and construction of a

tether dynamics simulator which can be used to simulate the natural dynamics

of long space tethers.

The development of a large angle slew and long term, precision attitude control

system (for the pitch axis) which generates control torques with a movable

tether attach point for the laboratory simulator.

The demonstration of both a large angle slew maneuver and long term, high

accuracy attitude control in a disturbance-free environment with the laboratory

simulator.

The experimental testing of the effects of varying system parameters, linear-

ity assumptions, and control algorithm complexity (i.e., system model) on the

performance of the precision attitude control system (in the disturbance-free

environment).

• The experimental determination of the effects that tether tension magnitude and

in-plane (pitch) direction variations on the precision attitude control system.

• The derivation of the correspondence between the observed behavior in the

laboratory and the expected flight test configuration.

The experimental testing of the effect of control algorithm complexity (i.e., mass

center estimation) and the effect of adding tension magnitude measurements

to the control algorithm on the performance of the precision attitude control

system (in the presence of tether tension variations)•
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1.5 Reader's Guide

This dissertation is organized into five chapters and an appendix. This first chapter

provides an introduction to the concept and history of tethered satellites, a general

description of their potential uses, and a detailed description of the astrophysical

pointing platform control problem (which is the focus of the current work).

The second chapter provides a detailed summary of the hardware which was assem-

bled in order to construct a laboratory simulation (pitch plane) of a typical tethered

satellite. The information contained therein includes a system level (i.e., flotation,

power, attach point positioning, computer, and sensor) description of the air-bearing

supported vehicle which serves as the astrophysical .pointing platform simulator. In

addition, Chapter 2 contains the description of a tether dynamics simulator cori-

strutted to simulate the dynamics (longitudinal and in-plane lateral) of a long space

tether. Finally, Chapter 2 describes the development of a number of key scaling

parameters which make the laboratory results meaningful in an orbital context.

The third chapter derives all the necessary equations of motion and control equa-

tions which were used to implement the attitude control algorithm for the simulator.

The general equations of motion for a tethered satellite end mass are derived with

the following assumptions: in-plane motion is decoupled from out-of-plane motion,

the parent spacecraft has a mass which is much greater than both the tether and

sub-satellite, the parent moves in a circular orbit, and the tether is massless and ex-

tensible. The equations for the laboratory simulator are derived by setting the orbital

rate to zero and including the effects of the micro-gravity acceleration experienced by

the orbiting tethered satellite. The final sections of Chapter 3 contain the detailed

derivation of the control algorithms used for pitch plane orientation control for both

a large angle slew maneuver and a fine pointing attitude regulator.

The experimental program is described in the fourth chapter. The first section

covers the experiments in a disturbance-free environment. A demonstration of both a

large angle slew and a long term, high accuracy regulator are described. The following

sub-sections contain descriptions of the experiments used to quantify the effects to the

control of estimator gain magnitude, the mass center estimator, and variations in the
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physical parameter used to model the stepper motor. The second section considers the

effects of environmental and tether disturbances on the ability of the control system

to regulate the sub-satellite orientation. Tether tension magnitude and direction

variations are used as the basis of the experimental program related to determining

the effects of natural tether dynamics on the control algorithm. Longitudinal and

lateral in-plane dynamics are described and their effects quantified. The final sub-

sections quantify the need for mass center estimation and tension feedback scaling in

the case where tether dynamics can be significant.

The last chapter draws conclusions based on the analysis and experimental results

presented in the previous three chapters. The appendix contains a sample FOR-

TRAN program which was used to perform the interrupt driven control algorithm

and a FORTRAN subroutine which was used to computer simulate the laboratory

hardware.





Chapter 2

Experimental Hardware

An experimental facility was developed in order to test the proposed tethered satei-

lite attitude control concept which generates control moments by tether attach point

positioning relative to the vehicle mass center. The laboratory simulator possesses

three degrees of freedom, one in rotation and two in translation. Therefore, the lab-

oratory simulation reduces the six degree of freedom orbital case to motions which

occur purely in the orbit plane. The purpose of the experimental facility is to verify

analytic predictions of closed-loop attitude control, to gain a better understanding

of the technological requirements (hardware and software) in order to implement the

concept, and to determine the sensitivity of the design to variations in mission re-

quirements, linearity assumptions, and design parameters. The experimental facility

consists of two major subsystems: an air-bearing supported vehicle to simulate the

satellite dynamics and a pair of positioning tables fitted with DC servo motors to

simulate natural tether motions. A detailed description of the design of each of the

subsystems follows. In addition, the configuration of the laboratory equipment as it

is used to simulate the orbital dynamic conditions is described. Finally, the relation-

ship between the results obtained in the laboratory and those expected on orbit are

detailed with the derivation of important scaling parameters.

12
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2.1 Air Bearing Vehicle

The air bearing vehicle consists of a flotation plate to provide friction-free suspension

in the plane of motion and a chassis to provide a convenient mounting platform for

the necessary hardware. A photograph of the vehicle is shown in Figure 2.1. The

photograph shows that the vehicle floats on top of a very smooth granite table and

that the tether is connected to the positioning mechanism at the nominal center of

mass of the vehicle. Figure 2.2 shows an exaggerated schematic side view representa-

tion of the hardware. The granite table is tilted a small angle,/3, with respect to the

local gravity vector. To simulate a 2 km long tethered satellite, the table tilt has been

adjusted so that/3 _ 2 arcmin. This tilt angle results in the following micro-gravity

acceleration:

g'= g sin(/_), (2.1)

where g is the value of the local acceleration of gravity on Earth (9.81 m/sec2).

Therefore, g' = 0.008 m/sec _. This value of micro-gravity acceleration is identical

to that experienced by a 2 km long tethered satellite in a nominal 250 km altitude,

circular orbit (see Chapter 3 for a detailed derivation of the micro-gravity acceleration

for tethered satellites). In addition, Figure 2.1 shows each of the major components

and related connections on board the air bearing vehicle. The on-board gas, power,

positioning, computer, and sensor systems will be described separately.

2.1.1 Gas and Flotation System

A schematic diagram of the gas and flotation system is shown in Figure 2.3. The

flotation plate is a 2.5 cm thick, 1 m diameter, circular aluminum disk. The underside

of the plate is ground flat to approximately 25 #m, which provides a smooth surface

on which the vehicle rides. The center of the plate is fitted with a small threaded

hole which serves as a gas supply hook-up. The gas cylinders on the vehicle store

the gas (dry nitrogen) which is used solely for flotation. From the cylinders, the

gas passes through a pressure regulator, then through a needle valve, before passing

through the gas hook-up in the flotation plate. After passing through the plate, the

gas enters a 15 cm diameter plenum on the underside of the plate, and then flows
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Figure 2.1: Photograph of Laboratory Simulator
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out to the surrounding environment between the granite table and the flotation plate.

The system was designed (see Majumdar [531 and Grassam and Powell [54]) such that

the gas flow rate would be approximately 0.27 m3/hr, the maximum mass to be lifted

would be 1000 kg, and the nominal distance between the bottom of the plate and top

of the granite table would be approximately 75 #m.

The chassis plate is a 1 m diameter disk made of 1.25 cm thick aluminum. The

chassis is positioned and held in place on top of the flotation plate by means of two

locating pins. The weight of the chassis is distributed on the air bearing with a

9.375 mm diameter solid o-ring positioned between the plates at two-thirds of the

outer radius. This weight distribution scheme was chosen in order to minimize load

variations from the chassis on the air bearing plate and to minimize the deflection of

the air bearing due to the chassis loading. A top view of the position of the compo-

nents mounted on the chassis is shown in Figure 2.4. The individual components are

arranged in a symmetric fashion about the center of the plate. This mounting style

helps to ensure that the center of the plate will nominally be the mass center of the

entire vehicle. As discussed by previous authors [6], this center of mass configuration

is advantageous because it minimizes both the necessary actuator size and control

energy.

The air bearing vehicle is subjected to small forces which are a result of the suspen-

sion system and which arise from the viscous drag of the flotation gas. Rehsteiner [48]

performed a detailed study of the properties of all types of gas bearings. The set of

actual forces exerted by the suspension system on the vehicle can be replaced with

a drag force, D___, applied at the vehicle center of mass and a drag torque, T___m, (a

couple) acting about a line perpendicular to the granite table top surface passing

through the vehicle mass center. Rehsteiner derived the analytic expressions for both

the drag force and torque. His results, for a circular bearing with an outer radius of

to, show:

#Trro2
D__,,, - H* I°v (2.2)

and

p_rr04
T___,,,- H" I_ ___. (2.3)
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In each of the above equations,

/_ is the coefficient of viscosity of the gas,

H* is the nominal height of the bearing above the table,

v is the velocity vector of the vehicle mass center, and

fl__is the angular velocity vector of the vehicle.

In addition,

(1 -r') 2
(2.4)

lt_- Hc

and

(I-r-')
I_ - 2He ' (2.5)

where Hc = 1 (for a constant gap clearance) and r* is the ratio of the plenum radius

to plate radius. Substituting the values for the given laboratory equipment into

Equations 2.2-2.5, the drag force and drag torque can be evaluated to be:

D._D¢_= -.186v (2.6)

and

T__,,,, = -7.5 x 10-7 £/. (2.7)

For a typical laboratory experiment, Ivl < 6 x 10 -4 m/sec and [_l < 3 x 10 -3 rad/sec.

Then, the magnitude of the drag force and drag torque can be computed to be

approximately 1.1 x 10 -4 N and 2.3 x 10 -9 N-m, respectively. Clearly, both the

drag force and drag torque due to the suspension system are extremely small and will

have negligible effect on the dynamics of the simulator.

2.1.2 Power System

The power system consists of rechargeable batteries and DC-DC converters to con-

dition the raw battery power to the required voltages for the on-board equipment.

The battery pack consists of two 12 V, 25.0 A-H, Cyclon Monobloc Batteries, man-

ufactured by Gates Energy Products. A full charge provides the vehicle with ap-

proximately 3 hours of continuous power. The two converters, manufactured by the
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Stevens-Arnold Division of Computer Products, Inc., condition the 24 Volts of the

batteries to provide 5 V @ 10.0 A and -4-12 V Q 750 mA.

The following equipment requires power from the on-board batteries:

• the on-board computer requires 5 V and 4-12 V,

• the stepper motor driver is rated at 24 V, the motor indexer needs a 5 V source,

and

• the sensors require a +12 V supply.

2.1.3 Positioning System

The hardware used to position the tether attachment with respect to the vehicle mass

center consists of a high accuracy positioning table and a high torque stepper motor.

The positioning table, manufactured by Design Components Inc., provides a single

axis of travel with a maximum stroke of 15 cm. A typical large angle slew maneuver

requires approximately 4-1.5 cm (3 cm maximum stroke) of travel to generate the

peak amount of control torque. The table is located on the chassis so that the vehicle

mass center is aligned with the center of the positioning table travel (see Figure 2.4).

As a result, the attachment point can be varied 4-7.5 cm with respect to the vehicle

center of mass. The table drive is geared such that one complete turn of the input

shaft corresponds to 0.5 cm of linear travel. The linear travel has a resolution of

25 #m and is repeatable to 2.5 #m [55].

The stepper motor is manufactured by Sigma Instruments, Inc. and is used to

turn the input shaft of the positioning table. Operated in full step mode, the motor

realizes 200 steps/revolution, which corresponds to 25 #m of linear positioning table

travel per step. The motor is operated at 2000 steps/second and provides a maximum

torque value of 5.75 N-m, and the holding torque provided by the motor is 4.25 N-m

[56]. The drive electronics for the motor consists of a driver and indexer board. The

indexer generates the required pulses to each of the of the four motor phases and

the driver provides the necessary current amplification in order to rotate the motor
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shaft. These electronic boards are manufactured by Superior Electric Corp. and are

interfaced directly into the computer system bus.

An important consideration when choosing the positioning table and stepper mo-

tor combination is the relationship between the motor shaft rotation of one step and

the linear translation associated with the step. As discussed above, one step of the

motor corresponds to 25/tm of linear positioning table travel. Since the position of

the tether attach point with respect to the vehicle mass center is a discrete function

(due to the discrete shaft positioning of the stepper motor), a limit cycle can occur.

This limit cycle would result from a misalignment between the vehicle mass center

location and one of the possible (discrete) positions of the attach point. In other

words, in the steady state (when there should be zero control moment), if the vehicle

mass center is not located directly at one of the discrete positions of the attach point,

a torque will be applied to the vehicle. As the orientation of the vehicle changes due

to the application of the torque, the control system will move the attach point to

halt the angular motion• Since the new attach point position will not be located at

the vehicle center of mass, a torque in the opposite direction will be applied until the

sequence is repeated, resulting in a limit cycle•

To analyze the magnitude of this effect, it was assumed that the mass center of

the vehicle falls directly half-way between two possible attach point locations. In

this case, if it is assumed that the time it takes to move from one attach point

location to another is negligible compared to the sample period, the magnitude of the

torque applied to the vehicle at each attach point location is the magnitude of the

tether tension multiplied by half of the positioning table accuracy. Further, if it is

assumed that the control system functions such that the attach point is moved from

one location to the other after each sample period, the torque applied to the vehicle

will have a time history as shown in Figure 2.5. In the figure, F0 is the nominal tether

tension magnitude, x is the distance of linear travel associated with one step of the

stepper motor, and T is the sample period. In the previously described scenario, the

equations describing the dynamic behavior of the state of the vehicle can be expressed

as:

= (2.8)
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Figure 2.5: Time History of Torque for Limit Cycle Behavior

and

, Fox

x2 = ±--_-, (2.9)

where I is the vehicle moment of inertia for the mass center about an axis perpen-

dicular to the granite table, xl represents the vehicle orientation (attitude), and x2

represents the angular rate of the vehicle. Dividing Equation 2.8 by Equation 2.9 it

dxl 4- 2Ix2
d'_z2 = -_"ox" (2.10)

can be shown that:

Solving Equation 2.10 for the state variables (angle and angular rate) yields:

X 1 = 4-+X_ -Jr C1, (2.11)

where cl is a constant of integration. Equation 2.11 provides a convenient phase-plane

description of the motion of the system and Figure 2.6 is a graphical representation

of the equation. The vehicle traces the closed curve P1-P2-Pz-P4, changing the value

of the state vector between pure angular velocity (at P1 and P3) and pure angular

displacement (at P2 and P4). In addition, Equation 2.9 can be integrated to yield:

, Fox.

x2 = ±-_--t + c2, (2.12)

where t is the time, and c2 is another constant of integration (which represents the

value of x2 at zero time). From Figure 2.6 it can be seen that the time for the vehicle
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Figure 2.6: Phase-Plane Descriptionof Possible Limit Cycle Motion

to change state from Pa to state P1 is given by the sample period, T. By symmetry,

it can be shown that the time to change state from P4 to P1 is simply half the sample

period. Therefore, at P1,
Fox T

x2 - (2.13)
41

Also, Xl is zero at P1- Combining this observation with Equations 2.11 and 2.13 it

can be shown that:
Foz T 2

ci = 3:_ (2.14)
16I

As a result of Equation 2.14 and the fact that at P2, x2 is zero, the maximum value

of xl (at P2) is:

Fox T 2
xl = cl = _. (2.15)

Therefore, the maximum value of the angular displacement during the limit cycle

is directly proportional to the tether tension, the positioning table resolution, and

the square of the sample period and inversely proportional to the vehicle moment of

inertia. For the laboratory simulator as built (see Section 2.3), the maximum value of

the angular displacement can be shown to be 5.5 × 10 .3 arcsec, and for the proposed

orbital flight test (see Section 2.3), the maximum displacement is 2.7 × 10 -z arcsec.

These extremely small values show that to the accuracy required, the discrete nature

of the positioning system should have no effect on system performance.
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2.1.4 Computer System

The on-board computer system was chosen such that the unit would provide a free-

standing computational environment which would be sufficient to implement the nec-

essary digital control algorithms. The computer is practically identical to the system

assembled by Alexander [58] used in his work on the control of satellite manipula-

tors. The computer is an STD bus-based system, with an 8088 microprocessor and

8087 math co-processor. In addition, an 80130 utility chip has been programmed to

perform interrupt-driven control loop calculations. As a result of the 8088 micro-

processor, many of the software development tools which are available on an IBM

PC-AT are compatible with the on-board system. Therefore, an IBM PC-AT was

chosen for program development and to serve as a host for the on-board computel:.

The source code for a sample control program, written in FORTRAN, is shown in

Appendix A.1. The software for downloading compiled high level control programs

from the host IBM PC-AT, as well as the ULDOS operating system environment, is

identical to that described by Alexander [58]. Once the control program has been

loaded into the memory of the on-board computer, the downlink connection from the

AT is broken and the on-board system is independent of the host. The major differ-

ence between the current system and Alexander's system is the implementation of a

communication link with the AT host over a fiber optic cable and modem. The cable

is attached at the tether attach point on the vehicle to minimize any possible torques

generated by the connection. The communication link is not used in the real time

control algorithms, it is merely convenient as a method of program control (starting,

stopping, interrupting, etc.) and as a means of transferring data collected during an

experiment to the host AT for analysis. To determine the effect of the cable on the

experimental results, software was compiled which allowed the fiber optic cables to

be disconnected during execution of the control algorithms. Since the results of these

tests showed no effect on the behavior (for both the large angle slew and fine pointing

algorithms) it was decided that the more convenient, always connected configuration,

would be employed for the rest of the experiments.
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Figure 2.7: Schematic of Coarse Phototransistor Angle Sensor

2.1.5 Sensor Systems

The on-board angle sensors are used to measure the angular orientation of the vehicle

with respect to an inertial reference in the laboratory. A combination of two sensors

has been implemented: a coarse sensor with a large dynamic range and a relatively

large noise level, and a high accuracy sensor which has a limited dynamic range and

a very small noise level. The goals of the laboratory experiment, as stated previously,

are to exhibit large angle slew capability on the order of 30 deg and to show long

term, fine pointing stability on the order of 1 arcsec. Hence, the two sensors can be

used in combination to provide the large angle sensing required for the slew and to

provide high accuracy angle measurements for the long term stability tests.

A schematic diagram of the coarse sensor is shown in Figure 2.7. The sensor is

constructed of two phototransistors mounted 90 deg relative to each other. Photo-

transistors operate in the same fashion as bipolar transistors, with one exception.

The phototransistor emitter current is proportional to the light energy incident upon

the radiation sensitive collector-base junction, whereas the bipolar transistor emitter

current is proportional to the base current. Therefore, the current output of each

phototransistor is proportional to the product of the source intensity and the cosine

of the incidence angle. Assuming a constant source intensity, each phototransistor

output represents the cosine of the incidence angle. In the nominal configuration

shown in Figure 2.7, the incidence angle for each phototransistor is the same. As a

result, the relative orientation of the mount with respect to the light source is zero.

As the mount rotates about an axis perpendicular to the plane of the paper, the
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Figure 2.8: Static Coarse Angle Sensor Output

incidence angle of the light from the source is different for each phototransistor. Due

to the rotation, then, the transistor outputs will be unequal and taking the difference

of the outputs will yield a linear measure of the relative orientation of the photo-

transistor mount with respect to the light source. The static output of this sensor is

shown in Figure 2.8. The figure shows both the static relationship between the actual

and measured orientation of the vehicle and the noise characteristics of the sensor. In

Figure 2.8(a), the x's correspond to actual measurements and the solid line represents

a least squares fit of the data to a straight line. As you can see, the dynamic range is

approximately 5=45 deg and the data follows a basically linear pattern. Figure 2.8(b)

shows that the sensor possesses an RMS noise level of approximately 0.1 deg.

The high accuracy angle sensor takes the form of an autocollimator. A schematic

diagram of the optical hardware for an autocollimator is shown in Figure 2.9. The

figure shows a condenser lens which serves to collect and focus the light from the

integral light source. The beam of collected light then bounces off of the reflecting

surface of a beam splitter and lands on the objective lens. The objective lens serves as

a collimating lens for the light traveling away from the beam splitter. If q, the angle

of the external mirror with respect to the collimated light, is zero, the collimated

beam is reflected back upon itself, passes through the objective lens heading back

through the beam splitter (in the non-reflecting direction), and is focused as a point

on the optical axis on the focal plane of the lens. If the mirror angle (q) is finite,

the collimated beam is reflected from the mirror in an off-axis direction. The light
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Figure 2.9: Schematic of Autocollimator Optics

then passes through the objective lens which focuses the beam on the focal plane at

a distance, d, from the optical axis. The value of d can be shown to be:

d=(2q)f, (2.16)

where f is the focal length of the objective lens. By placing two photosensitive

transistors along a plane parallel to the focal plane (with one just above the optical

axis and one just below the optical axis), a linear measure of the relative angular

position of the mirror and the autocollimator can be derived by comparing the relative

amounts of light energy which fall on each detector. The autocollimator used in

this study was developed by Lorell [59] for the work he did in the precision attitude

control of spinning bodies. Figure 2.10 shows a graph of the actual orientation change

versus the measured change and a representative time history of the static output of

the autocollimator. In Figure 2.10(a), the x's correspond to actual measured data

points and the solid line represents a least squares fit line to the data. You can see

that the autocollimator has a dynamic range of approximately +0.5 deg and that

the measured orientation follows a very nearly linear correspondence with the actual
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Figure 2.10: Static Autocollimator Output

vehicle orientation. Figure 2.10(b) shows that the static output of the autocollimator

possesses an RMS noise level of 0.77 arcsec.

Finally, in order to closely monitor the value of the force present in the tether, it

was decided to outfit the air-bearing vehicle with a force measuring device. A load

cell has been placed at the attachment of the tether on the air-bearing vehicle. The

load cell is a flatline model ELF-T1000-2, purchased from Entran Devices, Inc. The

specifications show [57] a dynamic range of 0-2 lbs (0-8.9 N) with a sensitivity of

100 mV/lb (22.5 mV/N).

2.2 Tether Dynamics Simulator

The tether dynamics simulator was developed in order to provide a means of varying

the magnitude and direction of the tether tension which is applied to the air-bearing

vehicle. It is important to have this capacity in order to test the behavior of the fine

pointing control algorithm when the satellite is subjected to tether force magnitude

and direction variations. A complete theoretical analysis of the dynamic behavior of

long tethers in space and their effect on the closed-loop attitude control of tethered

spacecraft is presented by He [31]. The tether dynamics simulator was constructed

in order to verify the theoretical pointing accuracies derived in this study.

A photograph of the tether dynamics simulator is shown in Figure 2.11 and a

schematic diagram of the same system is shown in Figure 2.12. These figures show
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Figure 2.11: Photograph of Tether Dynamics Simulator

positioning tables which are mounted in a plane parallel to the granite table top.

The tables were manufactured by Design Components, Inc. and possess the same

positioning accuracy as the table used to perform the on-board positioning of the

tether attach point [55]. Each table is fitted with a DC servo motor manufactured

by Pittman. Both motors possess 200 count/revolution (CPR) optical shaft encoders

and 24:1 planetary gearheads. These motors were chosen in order to drive the po-

sitioning tables at a maximum linear speed of 75 mm/sec. A closed-loop position

control algorithm uses the shaft angle measurements of the motors to track sinu-

soidally varying reference shaft paths (in the directions parallel to and perpendicular

to the nominal tether direction). The control algorithm is written in C and runs on an

8096 based computer on a card which plugs into one of the expansion slots of an IBM

PC-AT. The card, which plugs into the AT, was manufactured by Integrated Motions

Inc. and operates completely independently of the host AT. Control programs can be

developed on the host AT, compiled with a special 8096 C compiler, and then loaded

into the 8096 computer (with software provided by Integrated Motions). As a result,
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Figure 2.12: Schematic Diagram of Tether Dynamics Simulator

the position of the tether attachment at the wall (and, therefore, the magnitude and

direction of the tether tension force) can be varied in parallel with the operation of

the on-board control algorithm and the AT communication software discussed above.

The hardware is configured in the laboratory in such a way that the air-bearing

vehicle and wall attach point mechanism provide a replication of the conditions that

would exist in an orbital case. A schematic diagram of the air-bearing vehicle and

tether dynamics simulator is shown in Figure 2.13. The figure shows that the vehicle

is suspended on top of a granite table. The vehicle is connected to the tether dy-

namics simulator (which is mounted on a nearby wall) with a short piece of Spectra

tether material and a linear spring. The wall attach point mechanism can be used

to introduce tension variations (in both magnitude and direction) by simply sinu-

soidally varying the tether attachment position at the wall. Parallel to the nominal

tether direction, the mass and spring behave like a lightly damped oscillator, and

perpendicular to the nominal tether direction, the vehicle behaves like a pendulum.

As a result, at each frequency of oscillation for the wall attach point (and in each
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direction), steady state motion is characterized by the oscillation frequency and the

transfer function gain. From the transfer function gain, the amount of input distur-

bance can be calibrated for purposes of comparison to theoretical predictions (see

Sections 4.2.3 and 4.2.4).

2.3 Laboratory Results and Orbital Performance

The laboratory simulator possesses physical characteristics which differ from the nom-

inal design of the flight test vehicle. For example, the values of the total mass and

moments of inertia for the laboratory vehicle are quite different from the values ex-

pected for the flight test configuration. In order to quantify how the dynamic behavior

of the laboratory simulator will differ from that of the flight vehicle, important scal-

ing parameters have been derived. These parameters include the tether length, the

frequency of oscillation of the mass-spring mode of the tether and vehicle, the micro-

gravity field, and the closed-loop system bandwidth. Table 2.1 is a summary of the

values of these scaling parameters for the laboratory vehicle and the expected flight

test design.

The nominal design tether length for the flight test configuration is 2000 m. Obvi-

ously, there are physical constraints which prohibit the implementation of this long a



CHAPTER 2. EXPERIMENTAL HARDWARE 31

Quantity On Orbit In Lab

tether length, L (m) 2000 2

0.025 0.034mass-spring mode, f,. (Hz)

micro-gravity, g' (m/sec 2) 0.0082 0.008

bandwidth, f, (Hz) 0.12 0.16

Table 2.1: KITE Scaling Parameters

tether in a laboratory environment. A 2 m long tether is attached from the laboratory

simulator to the tether dynamics simulator. In order to make this length of tether less

stiff (so that unacceptably large tension variations are not generated by very small

attach point motions), a linear spring has been inserted between the tether and the

tether dynamics simulator. In addition, "softening" the laboratory tether (with the

spring) is useful when varying the magnitude and direction of the tether force (see

Sections 4.2.3 and 4.2.4). The spring constant of the linear spring inserted in the

tether is approximately 11.4 N/m.

The frequency of oscillation of the mass-spring mode of the vehicle and tether is

given by:
./--:--

1

i_- (2.17)fm= 

where k isthe tetherspring constant and m isthe vehiclemass. For the orbitalcase,

the spring constant is:
EA

k = --_-, (2.18)

where E is Young's modulus for the tether material, A is the tether cross sectional

area, and L is the tether length. For the tether discussed by He [31], EA = 5.3 × 104 N

and with a sub-satellite mass of 1000 kg, the frequency of oscillation of the mass-

spring mode for the orbital case is 0.025 Hz. In the laboratory, the value of the

spring constant is 11.4 N/m and the vehicle mass is approximately 250 kg. Then,

the frequency of oscillation is 0.034 Hz. The discrepancy in these values is related to

the simulation of tether tension magnitude variations and will be explained further

in Section 4.2.3.

The value of the micro-gravity field for the flight test and laboratory situations is
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well known and will be derived in Chapter 3. For the orbital case, the micro-gravity

acceleration is given by the acceleration generated by the gravity gradient force. As

derived in Section 3.1.1, Equation 3.56 shows that the gravity gradient acceleration

is:

g'= 3Ln 2. (2.19)

For a 2000 m tether length and a nominal orbital rate (n) of 0.0012 rad/sec, the

micro-gravity acceleration is 0.0082 m/sec 2. In the laboratory, the micro-gravity

acceleration is simply the product of the sine of the table tilt angle and the value

of the local acceleration of gravity. Equation 2.1 shows that the laboratory micro-

gravity acceleration is equal to 0.008 m/sec 2. As a result, the micro-gravity field in

the laboratory is approximately equal to the value of the orbital case.

The final scaling parameter introduced in Table 2.1 is the closed-loop system

bandwidth. In the discussion of a one dimensional model, He [31] derives an estimate

of the peak time (tp) for a typical step response. He shows the peak time to be

approximately:

~ ( R o,
tp = 2 \n2-__ , (2.20)

where Rg = V/_ is the radius of gyration for the vehicle, 0_ is the step size, and Vr_

is the slew rate limit of the attachment point. For a damped, second order system,

it can be shown that:
71"

tp = --, (2.21)
_Od

where Wd = w,__ is the damped natural frequency, w,_ is the undamped natural

2
frequency, and _ is the damping ratio of the system. For ¢" = 5,

4wa (2.22)O.)n _
3

Combining and rewriting Equations 2.20-2.22, it can be shown that:

,-,, 2rr (Ln2mVm,,_) l/aw,_= 3 _, I0_ (2.23)
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Since g_ = 3Ln 2 and w, = 2_'f,,, Equation 2.23 can be used to derive the approximate

closed-loop system bandwidth (f,) to be:

~ 1 (g'mVm._) 1/3f" = 5 \ 310_ (2.24)

For both the orbital and laboratory cases, g' ,_ 0.008 m/sec 2, t_, _ 0.01 rad (0.57 deg),

and Vm_, -_ 0.05 m/sec. The mass for the orbital case is approximately 1000 kg and

the central, principal moment of inertia for the vehicle is approximately 300 kg-

m 2. Substituting these numbers into Equation 2.24 yields a closed-loop bandwidth

of 0.12 Hz. In the laboratory, the vehicle mass is approximately 250 kg and the

central, principal moment of inertia is 30 kg-m _. These values yield an approximate

closed-loop bandwidth of 0.16 Hz. These bandwidth values suggest that the response

time of the current flight test configuration will be 33% slower than the laboratory

simulator response time. As a result, when drawing conclusions about the flight test

vehicle based on performance of the laboratory simulator, the above time scaling must

be kept in mind. Also, in the simulation of tether tension variations, this bandwidth

difference will result in laboratory frequencies (of the tension magnitude and direction

variations) which are scaled relative to the expected orbital values (see Sections 4.2.3

and 4.2.4).



Chapter 3

Dynamic Equations and Control

Algorithm

The development of an attitude control system for a generic satellite is dependent on

the formulation of an accurate mathematical model which describes the significant

dynamic behavior of the system. With this model in hand, the important natural

dynamic characteristics can be derived and then an appropriate control algorithm can

be designed. This chapter provides the detailed formulation of the system dynamic

equations and attitude control algorithm as applied to the precision attitude control

of tethered spacecraft. A brief discussion of the three dimensional (six degree of

freedom) motion of a tethered satellite configuration will be followed by a detailed

derivation of the in-plane orbital equations of motion. The equations of motion of

the laboratory simulator will then be derived by exploring the effects of gravity and

centrifugal gradients on orbiting spacecraft and setting the orbital rate to zero in the

equations for the in-plane orbital case. Finally, the equations will be linearized and

the control algorithm will be derived for the large angle slew maneuver and the long

term, fine pointing control exercise.

34
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3.1 Dynamic Equations

There are many discussions of the dynamics of tethered satellites in the open litera-

ture. The content of each of the studies ranges from the study of a relatively simple

dumbbell with a massless, inextensible tether (see Stuiver [8] and Bainum and Ku-

mar [9]), to studies of an extensible dumbbell (see, for instance, Paul [12], Pringle [14],

Bainum, Harkness, and Stuiver [15], Stuiver and Bainum [16], and Singh [17]), to

analysis of a massive extensible dumbbell (see Modi and Misra [18], Modi, Chang-Fu,

Misra, and Xu [10], Beletskii and Levin [23], and Bainum, Diarra, and Kumar [24]),

to the case of general spacecraft with flexible appendages (see Lips and Modi [26][27],

and Misra and Modi [25]). Arnold [19] discusses many aspects of the behavior of

long tethers in space and the two handbooks [40][41] published by the NASA Office

of Space Flight provide an excellent reference for the basics of tethered satellite sys-

tems. Stephenson [45] discusses the computer simulation of a KITE implementation,

including Space Shuttle and longitudinal tether dynamics. He [31] separately dis-

cusses the orbital dynamics, the attitude dynamics, and the dynamics of the tether,

and then performs a computer simulation of the combined system. The conclusions

that can be drawn based on these discussions are as follows:

1. For slow motions of the tether (ignoring the elastic properties of the tether) and

for small oscillations about the nominal configuration (the tether aligned with

the local vertical):

(a) The out-of-plane pendular librations are decoupled from longitudinal mo-

tions and in-plane pendular librations.

(b) The angular rate of in-plane and out-of-plane pendular librations are of the

same order of magnitude as the orbital rate (i.e., v/3 and 2 times orbital

rate, respectively).

(c) The in-plane and out-of-plane pendular libration modes have no natural

damping.

(d) The tether applies an external force to the sub-satellite which is much

greater than other environmental disturbing forces (e.g., atmospheric drag).
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2. For a tether modeled as a uniform continuum without bending resistance and

assuming small perturbations from the nominal configuration:

(a) Both the lowest order longitudinal oscillation frequency (mass-spring mode)

and the lowest order lateral vibration frequency are much higher than the

orbital rate.

(b) The pendular libration modes are decoupled from the tether vibration

modes.

(c) The longitudinal tether oscillations are moderately well damped (due to

stretching of the tether).

(d) The lateral tether oscillations are not well damped and the only natu-

ral damping mechanism for lateral oscillations is the nonlinear coupling

between lateral motion and longitudinal elongation.

3. For the rigid body rotation of a sub-satellite of a tethered satellite configuration:

(a) Passively stabilized satellites with fixed tether attach points can provide

undamped attitude regulation on the order of 1 deg.

(b) Providing a mechanism to vary the tether attachment point with respect

to the satellite mass center should be able to provide damped attitude

regulation on the order of 1 arc-see.

3.1.1 Orbit Plane Equations of Motion

The above conclusions suggest that a reasonable model for the planar dynamics of a

tethered satellite can be derived by considering the motion in the orbit plane of the

spacecraft. Therefore, the sub-satellite model will possess three degrees of freedom

(two in translation and one in rotation). In addition, if it is assumed that the sub-

satellite mass and the mass of the tether are much smaller than the mass of the parent

spacecraft, then the center of mass of the complete constellation lies very close to the

mass center of the parent spacecraft. Also, it can be assumed that the orbit of the

parent and, therefore, the mass center of the constellation, is circular, with a constant
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Figure 3.1: Schematic Diagram of Orbital Plane Motion

orbital rate. Finally, since the tether for an astrophysical pointing platform will be

between 1-2 km long, the tether length is much smaller than the orbital radius (which

will be on the order of 6500 km).

These assumptions serve as the starting point for the derivation of the orbit plane

equations of motion for a tethered satellite, the derivation to be based upon Kane's

Method of Formulating Dynamic Equations [46]. Figure 3.1 shows a schematic dia-

gram of the system under consideration. Body A is the parent spacecraft, T is the

tether, and body B represents the sub-satellite. The orbital rate is signified by n

and is assumed constant for the shown circular orbit. The position vector from the

attracting center, E, to the mass center, A °, of A is r. The magnitude of r is constant

and is represented by the equation

Ir[ = Ro. (3.1)

The unit vectors a 1 and a 2 are mutually perpendicular and are fixed in body A.

Vector a 1 is parallel to the local vertical axis and vector a 2 is parallel to the velocity

vector of the mass center of body A. A unit vector, _, perpendicular to the orbit
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Figure 3.2: Geometry of Tethered Satellite Orbit Plane

plane, is given by

a_a = _a1 x a 2. (3.2)

Figure 3.2 shows a close-up view of the tethered satellite. B" is the center of mass of

the sub-satellite, which has a mass of roB. The position vector from A" to B" can be

represented by (see Figure 3.2 for a graphical representation of ql and q2)

7-A-B" = qla a + q2a 2. (3.3)

The vectors bl and h2 are mutually perpendicular unit vectors fixed in body B, they

are related to a 1 and a 2 by the values shown in Table 3.1, where c3 = cos(q3) and

s3 = sin(qa). The angle q3 characterizes the orientation of the sub-satellite, B, relative

to the parent spacecraft, A.
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al a_2

hl C3 83

h2 --33 C3

Table 3.1: Relationship Between Unit Vectors Fixed in A and B

Kinematic Equations

The kinematic expressions of interest in the dynamic analysis include the inertial

angular velocity and angular acceleration of B, the inertial velocity and acceleration

of B*, and the inertial velocity of point P, the attach point of the tether on the

sub-satellite. The angular velocity of B is given by

_O B = 0,2 A "q-A ;dB, (3.4)

where

and

_A = na__z, (3.5)

AW__.B= _3a3. (3.6)

If the generalized speed u3 is introduced as

u3----03, (3.7)

then Equation 3.4 can be rewritten (making use of Equations 3.5, 3.6, and 3.7) as

_B = (n + u3)az. (3.8)

The angular acceleration of B is

(_B d B
_ = _ = a3_.

The velocity of B" is given by

(3.9)

w

v B" = v_a +AvB', (3.10)
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n D

where AvS" is the velocity of B* in body A, and t_,A is the velocity of point A, the

point of A which coincides with B* at the instant under consideration. Further,

w

_vA = _vA" + w_.A x _rA's'. (3.11)

From the assumption of a circular orbit,

E A" = nR0a 2. (3.12)

In addition, the velocity of B" in A is

a_2B"= qlal + 02a2. (3.13)

Introducing two additional generalized speeds U 1 and u2 as

ul = 41, (3.14)

u2 = ()2, (3.15)

and combining Equations 3.10-3.13 and 3.3 with Equations 3.14 and 3.15, one finds

that

1,B* = (ttl - rtq2)a 1 -t- [u2 -t- ,_(R0 nu ql)]a2. (3.16)

The acceleration of B* can be written

aS. = _aa +aa_s" + 2w_a ×AEB', (3.17)

where A_aB" is the acceleration of B* in A and

m

a A =a_ A" +w__.A x (w__A x rA'B'). (3.18)

Furthermore,

_aA" = -n2Roal. (3.19)

From Equations 3.13, 3.14, and 3.15, the acceleration of B* in A can be expressed as

Aa__B" = //18.1 -I-l_/2a 2 • (3.20)

Hence, from Equations 3.17-3.20,

a B° = [ttl -- 2nt/2 -- n2(Ro + ql)]al -+- (_2 -- nUq2 + 2nu,)a_a_2. (3.21)



CHAPTER 3. DYNAMIC EQUATIONS AND CONTROL ALGORITHM 41

i w_iB v_" v g

1 0 g_ a_

2 0 a_ a_2

3 o -(x + d)(c3 , +

Table 3.2: Partial Angular Velocities and Partial Velocities

The velocity of the tether attach point on the sub-satellite, V P, is given by

v P = v s. + w_.s x (x + d)h2 +S_v_vP. (3.22)

In Equation 3.22, B_vP is the velocity of P with respect to the sub-satellite, and

(x + d)b 2 is the position vector from B* to P. The distance x represents the position

of the tether attachment point with respect to the assumed mass center of B, point

M in Figure 3.2, and d is the distance between the actual mass center, B', and the

assumed mass center, M. The distance x can be varied by the actuator mounted on

board the sub-satellite (see Section 2.1.3) and is, therefore, the control input. The

velocity of P in B is given by

B_P = ._b2" (3.23)

Equations 3.16, 3.22, and 3.23, yield

v P = [ui - nq2 - (n 4- u3)(x + d)c3- xs3]al +

[u2 -4- n(Ro -4- ql) -(n-4- u3)(x + d)s3 -4- ,T.c3]a2. (3.24)

Partial velocities and partial angular velocities associated with the generalized speeds

ul, i = 1,2,3, can be formed by inspection of Equations 3.8, 3.16, and 3.24. For

convenience, the results are summarized in Table 3.2.

Generalized Inertia Forces

The generalized inertia forces for the sub-satellite can be found from the following

expression

F, = v/s'. R B + _iB .ST,,, i = 1,2, 3. (3.25)
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_RB and BT* are the inertia force and inertia torque for B, respectively. The inertia

force is given by

__RB = -rnsa_q_B', (3.26)

and the inertia torque is

s_,. = __as. I - wB x I • ws, (3.27)

where ! is the central inertia dyadic of B. In view of Equations 3.8 and 3.9, Equa-

tion 3.27 reduces to

BT__*= -- I3 i_za_a, (3.28)

where I3 is the central principal moment of inertia of B for a line parallel to a 3.

Therefore, combining the values of the partial velocities shown in Table 3.2 and the

expressions in Equations 3.21, 3.25, and 3.28, one finds that the generalized inertia

forces for the sub-satellite are

F_* = -ms[/tl - 2nu2 - n2(Ro + ql)], (3.29)

Y_" = -mB(_ + 2,,,,, - ,?q_), (3.30)

F; = -I3ha. (3.31)

Gravitational Forces

The set of gravitational forces acting on the sub-satellite of a tethered satellite con-

stellation can be replaced with a force acting at the sub-satellite mass center and a

couple Kane, Likins, and Levinson [47], have developed a convenient methodology for

determining the magnitude and direction of the gravity force and the torque of the

couple, called the gravity torque. The gravity force for body B is given by

mErnB r EB" (3.32)
F_=--GkE s.13_ ,

where G is the universal gravitational constant, mE is the mass of the Earth, and

_rEB" is the position vector from the center of the Earth to B. From Equations 3.1

and 3.3,

r EB* "- (P_o -t- ql)al -t- q2_a2. (3.33)
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Consequently,

Since,

+ _] + (3.34)

Ro >> q,, (3.35)

Ro :>> q2, (3.36)

Equation 3.34 can be replaced (by dropping terms nonlinear in qllRo and q2/Ro)

with

._fEB'.-3 _ Ro3 (1 - 3_) . (3.37)

Combining Equations 3.32, 3.33, and 3.37 one finds that

For a circular orbit,

n 2 = G mE (3.39)
R_'

and, linearizing once more, one obtains

F_.g ,_ -mBn 2 [(Ro - 2qx)al + q2__a2]. (3.40)

The moment about B* of the gravitational forces exerted on B by E can be

approximated by [47]
GmE

M g _ 3 ir---k_i3 d x Z.d, (3.41)

where d is a unit vector pointing from the center of the Earth to B*. The vector d

can be written
_EB *

d-i_rEs, i, (3.42)

or, after linearization,

Equations 3.41 and 3.34 lead to

q2 (3.43)
d-- a 1 -_- _a 2.

GmE ( ql) (i:_i1) (d.bl) (d.b_)a__ ' (3.44)= 1-3 
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where I1 and 12 are the central principal moments of inertia of B for lines parallel to

bl and b2, respectively. Combining Equations 3.39 and 3.44, one arrives at

M a = 3n 2 1 - 3-_ cas3 + -_(%- s_) (12- I,)a_z. (3.45)

Generalized Active Forces

The generalized active forces depend on gravitational forces discussed above and

on the tether forces which act at the tether attach point. The latter forces are

quite complicated, and their mathematical description is dependent on the model

chosen to describe the dynamics of the tether. He [30] develops a mathematical

model to describe the longitudinal and lateral motions of long tethers in space. For

present purposes, it is sufficient to note that tether forces exist and that they can be

represented by a force __.Ft applied at P. The generalized active forces then are given

by

F, = _±_" . Fg +w__ . t__J.lg+ __,P. F,, i= 1,2,3. (3.46)

Making use of the partial velocities in Table 3.2 and Equations 3.40 and 3.45, one

obtains

FI = -mBn2[R0 - 2(L + ql)] +---Ft "-al (3.47)

F2 = -rnBn2q2 + F t • a_: (3.48)

F3 = 3n 2 1- 3--_ c3s3 + "-_(c_- s_) (I2 - I1) -

(x + d)_.Ft, bl. (3.49)

Orbital Equations of Motion

The equations of motion of the sub-satellite can be formualted by writing

F, + F_ = 0, i= 1,2,3, (3.50)

where Fi* and Fi are the previously derived generalized inertia forces and generalized

active forces. Equations 3.29-3.31 and 3.47-3.49 yield

itl ---- 2nu2 + 3n2ql + 1--_-ff_t.al (3.51)
rrt B
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1
-2nul -4- _E.t • a-2

mB

- I1 ql
3n2(1_I3 ) [(1-3Z)

x +
dF_.t . b 1

I3 --"

q2 tc 2 __ s_)] -
C3S3 + "_ 3

(3.52)

(3.53)

Equations 3.51 and 3.52 can be recognized as the Euler-Hill Equations [31] govern-

ing the mass center motion of a spacecraft relative to an orbiting reference frame. The

term 3n2ql in Equation 3.51, composed of two-thirds gravity and one-third centrifugal

acceleration, as can be seen from Equations 3.21 and 3.40, is referred to as the micro-

gravity acceleration and is commonly denoted by g'. In its nominal configuration, the

sub-satellite will be positioned relative to the parent such that

ql _ L, (3.54)

and

q2 ---- q3 = 0.

Under these circumstances, expressed as

(3.55)

g' _ 3n_L. (3.56)

Equation 3.53 shows that the effect of tether forces on the rotational motion of

the sub-satellite vanishes unless there is an offset between the tether attachment and

the center of mass of the satellite, i.e., unless (x + d) _ 0. Equivalently, it reveals

that one can affect the orientation of the sub-satellite by varying the position of the

tether attachment point with respect to the mass center location of the sub-satellite.

Therefore, with appropriate control logic, one can position the tether attach point

relative to the sub-satellite mass center in real time, in such a way as to control the

orientation of the sub-satellite.

3.1.2 Laboratory Simulator Equations of Motion

As discussed in Chapter 2, the laboratory simulator is an air-bearing supported vehi-

cle. The vehicle consists of the hardware necessary to implement the attitude control
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of the vehicle. The simulator possesses three degrees of freedom (one in rotation

and two in translation) and it exhibits essentially friction-free motion in the plane of

suspension. In addition, it is attached to a tether dynamics simulator, located in the

laboratory, which is used to simulate the behavior of a long, space-based tether. As

a result, save the orbital motion, the laboratory simulator possesses the same degrees

of freedom and essentially the same dynamic characteristics as the orbital model of

a tethered satellite discussed previously. The differences in the dynamic behavior of

two systems, which arise from the air-bearing suspension and the shorter laboratory

tether length, are negligible compared to the macroscopic behavior of the systems.

The air-bearing suspension forces have been shown to be small (see Section 2.1.1 ), and

the shorter tether length will only increase the pendular natural frequency. However,

the increase in the natural frequency is so small that the laboratory pendular fre-

quency is smaller than the expected closed-loop bandwidth of the system. Therefore,

the kinematic equations for the simulator can be determined simply by setting the or-

bital rate to zero in the previously described development. The laboratory generalized

active forces are a result of the simulated micro-gravity acceleration, the interaction

of the air-bearing suspension with the vehicle, and the tether dynamics (which is the

sum of the natural laboratory tether dynamics and the additional contribution due

to the motion of the tether dynamics simulator).

Generalized Inertia Forces

The generalized inertia forces for the laboratory simulator can be determined sim-

ply by setting the orbital rate to zero in Equations 3.29-3.31. As a result, for the

laboratory case

F_ = -rnBiq, (3.57)

F_ = -mB_2, (3.58)

Fj = -I3/_a. (3.59)
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Generalized Active Forces

The generalized active forces for the laboratory simulator result from the combination

of forces applied to the air-bearing vehicle by the micro-gravity field, the air cushion,

and the tether. Therefore, for the system in the laboratory, the generalized active

forces result from the equations

F,=v_'.(F_g+F_,,)+w___.T_,,+_P.F_t, i=1,2,3, (3.60)

where Fg is the resultant force from the simulated micro-gravity field, F_ and

are the force applied at the mass center and a moment about the mass center of the

forces exerted by the air cushion on the vehicle, and __F, is the force exerted by the

tether acting on the sub-satellite at P.

The micro-gravity field is simulated in the laboratory by tilting the plane of sus-

pension of the air-bearing vehicle so that it is not perpendicular to the local gravity

vector (see Figure 2.2). The level of micro-gravity acceleration is adjusted by varying

the tilt between the local gravity vector and the plane of the air cushion. The de-

sired tilt angle is that angle which results in the same micro-gravity field as would be

found in the orbital case (for the specific tether length and orbital rate). Therefore,

the force on the laboratory sub-satellite due to the micro-gravity acceleration is

E.g = mBg'a,. (3.61)

The forces exerted on the sub-satellite by the air-bearing suspension system can

be replaced with a single force acting at the mass center of the vehicle and a couple.

The magnitude and direction of the force and the torque of the couple have been

shown by Rehsteiner [48] to be proportional to the mass center velocity and vehicle

angular velocity, respectively. As a consequence, the resultant force can be expressed

as

ff__ = -btv s" = --b_(uaal + u2a2), (3.62)

where bt is the linear damping coefficient for the air cushion. In addition, the torque

of the couple applied to the air-bearing vehicle can be expressed as

T,, = -b,_ B = -bru3._, (3.63)
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where b, is the rotational damping coefficient for the air cushion (see Section 2.1.1

for a detailed discussion and evaluation of bl and b_).

The tether in the laboratory consists of a short piece of Spectra tether material and

a linear spring. The spring serves to make the short laboratory tether more compliant

so that small tether attach point motions will not generate large tension variations.

In addition, since a 2 km long tether will be considerably more compliant than a 2 m

piece of the same material, the spring also serves to make the laboratory tether behave

more like the expected orbital tether. As a result, a good, relatively simple model

of the laboratory tether consists of a spring-damper system whose line of action is

along the tether direction. This model ignores the longitudinal and lateral dynamics

of the short tether material, which are negligible compared with the behavior of the

spring. The line of action of the tether is given by the vector t shown in Figure 3.2

and is equal to
pQP

t = _ = c.__a1 + s._a 2, (3.64)

where p__QPis the position vector from the tether attach point on the parent, Q, to

the tether attach point on the sub-satellite, P, c, and s, represent cos(p) and sin(p),

respectively, and p is the angle between the tether and the local vertical. As shown

in Figure 3.2, the vector pQP is given by

p_QP = [q, - vl - (x + d)s3]al + [q2 - v2 + (x + d)c3]a2, (3.65)

where vx and v2 are offsets from Q to the center of mass of A, which is the nominal

attach point on the parent spacecraft. These linear dimensions can be functions of

time so as to impose variations in magnitude and direction of the tether force applied

to the sub-satellite. These variations can be used to simulate the longitudinal and

lateral dynamics of a long space tether in the laboratory (see Section 4.2.5). The

magnitude of the tether tension is the sum of the effects of the linear spring and

linear damper and can be expressed as

d

IF, I = k(lpePI - L)+ b,-_ (IpQel) , (3.66)

where L is the unstretched length of the spring, k is the linear spring constant, and bt is
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the linear damping coefficient of the damper model. Therefore, from Equations 3.64-

3.66, the tether force vector is given by

Ft = -IF_alL (3.67)

The generalized active forces for the laboratory simulator can be determined by

using Equation 3.60 in addition to Equations 3.61-3.63, 3.67, and the partial velocity

values shown in Table 3.2. The generalized active forces are given by

F1 = -IF, It,, -4-msg'- b_ul, (3.68)

F2 = -IF, l_,- btu_, (3.69)

123 = (x -4- d)lFtl(c,.,c3 + sus3) - bru3. (3.70)

Laboratory Equations of Motion

The equations of motion for the laboratory simulator can be derived by setting

F_'+Fi=0, i=1,2,3, (3.71)

and by making use of the previously derived laboratory simulator generalized inertia

forces and laboratory simulator generalized active forces. Combining Equations 3.57-

3.59, Equations 3.68-3.70, and Equations 3.71, one obtains the laboratory simulator

equations of motion,

, 1
t/1 = g - _([__Ft[cu -4-btul), (3.72)

mB

1
_= - (IFtls, + btu2), (3.73)

77ZB

1

_3 = T3[IF,l(x + d)(c,,c3+ s,s3) - b,u3]. (3.74)

Equations 3.72 and 3.73 are the differential equations which determine the linear

motion of the laboratory simulator in the directions parallel to and perpendicular

to the local vertical direction, respectively. Equation 3.74 is the differential equa-

tion which governs the rotational behavior of the laboratory vehicle. These three

equations, along with the previously declared definitions

(Ii = ui, i = 1,2, 3, (3.75)
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fully determine the motion of the generalized coordinates for the laboratory simulator.

Appendix A.2 contains a FORTRAN subroutine which implements the six, first order,

differential equations which describe the simulator motion and which can be used in

conjunction with a numerical differential equation solver to numerically solve for the

laboratory vehicle motion.

3.1.3 Linearized Equations for Laboratory Simulator

The equations, 3.72-3.74 and 3.75, are a set of six, coupled, nonlinear, first order

differential equations which describe the motion of the laboratory simulator under

the influence of the previously described modeled forces. In order to design a linear

control law which makes use of the results of linear system theory, the nonlinear

differential equations need to be converted to an approximate linear form. To that

end, the angle, #, that the tether makes with the local vertical is regarded as very

small in the absence of large, unmodeled transverse forces. For present purposes, p

is assumed to be zero, so that the following relations become valid:

c, = 1, (3.76)

_ = 0. (3.77)

Furthermore, the tether tension magnitude can be split into a nominal, constant value

and a small, zero mean variation superimposed on the nominal value. Therefore, the

tension magnitude can be represented by

IF,I = Fo + dF. (3.78)

From Equation 3.72, the value of the nominal tether tension magnitude, F0, is equal

to the value of force necessary to balance the micro-gravity field. As a result,

Fo = rnBg'. (3.79)

In addition, it can be assumed that knowledge of the mass center location is suffi-

ciently accurate that control torque generation will not be affected by any residual

misalignment. As a result, it can be assumed (for now) that

d= O. (3.80)
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Finally, it will be assumed that the torque applied to the simulator through the air-

bearing suspension is very small in comparison to the control torque. Combining

Equations 3.74-3.78 and 3.80, the rotational equation of motion can be shown to be

/13- h i + -_0 cosq3. (3.81)

For purposes of control law design,itisassumed that q3 issmall and that the tension

variations are small compared with the nominal value of the tension magnitude (i.e.,

F0 >> dF). In addition, if q and I are defined as

q --= q3, (3.82)

I = 13, (3.83)

in order to simplify notation, the following equation is the approximate, linear, dif-

ferential equation of rotational motion for the laboratory sub-satellite:

Fo
= Tx. (3.84)

Here x is the control input and q is the orientation angle of the vehicle (the variable

to be controlled). For instances when either q is not small or when dF is on the same

order of magnitude as F0, the control algorithm can calculate the desired offset, Xd,

and then obtain the actual offset, x, by scaling xd as follows (see Lemke [42])

(3.85)
z=( 1 + _ cosq

The goal of the control algorithm will be to determine the position of the attach point

with respect to the center of mass of the vehicle as a function of time. Equation 3.84

will serve as the model of the plant. Control algorithms for large angle slewing and

high accuracy pointing will be developed in the following sections.

3.2 Control Law Development

The attitude control problem for a tethered astrophysical pointing platform can be

broken down into two main tasks: large angle slew capability (on the order of 4-30 deg)



CHAPTER 3. DYNAMIC EQUATIONS AND CONTROL ALGORITHM 52

in order to quickly change from one target to another over the course of an orbit and

long term, high accuracy (on the order of 1 arcsec) pointing in order to provide a

stable platform for data collection. In order to exhibit large angle slew capability, the

control system must show that sufficiently large and accurate control torques can be

generated as required in order to drive the necessary attitude motion of the satellite.

The task for long term, high accuracy pointing is to show that the control system can

reject disturbances (both environmental and modeling errors) to the level that they

will have a sufficiently small effect on the attitude of the satellite. Since these tasks

are slightly different, two distinct control algorithms have been designed to handle the

special needs of each task. In the case of the large angle slew maneuver, the control

algorithm must provide sufficient phase lead while being careful not to ampliL, the

sensor noise unnecessarily. For the high accuracy, long term pointing case, the DC

gain of the control algorithm must be extremely high in order to reject the effects

of disturbances. The current work considers the control law development for the

pitch dynamics of a tethered sub-satellite. For a discussion and simulation of the full

six degree of freedom attitude control algorithm for tethered satellites, the reader is

referred to the work undertaken by tte [31]. The current work serves to verify the

simulation results obtained by He for tethered satellite pitch dynamics.

3.2.1 Large Angle Slew

In order to design a control law for the large angle slew maneuver, it is necessary to

convert the model of the plant (Equation 3.84) into the equivalent Z-plane represen-

tation. Taking the Laplace Transform of Equation 3.84 yields (assuming zero initial

conditions):
IV1

Q(s) = _s°: X(s), (3.86)

where s is the Laplace Transform variable and Q(s) and X(s) are the Laplace Trans-

forms of the vehicle orientation and attach point position, respectively. Taking the

Z-transform of Equation 3.86 (see Franklin and Powell [50]) yields:

FoT: z + 1

Q(z) - 21 (z- 1) 2 X(z)= FoG(z)X(z), (3.87)



CHAPTER 3. DYNAMIC EQUATIONS AND CONTROL ALGORITHM 53

Qr(z) Q(z) >

Figure 3.3: Large Angle Slew Control Block Diagram

where z is the Z-transform variable, T is the sample time, G(z) is the Z-transform

transfer function from applied control torque to vehicle orientation, and Q(z) and

X(z) are the Z-transforms of the vehicle orientation and attach point position, re-

spectively. The values of F0 and I for the laboratory simulator are discussed in

Section 2.3 and are equal to 2 N and 30 kg-m 2, respectively. The value of the sam-

ple time, T, for the candidate design is .5 sec which corresponds to a 2 Hz sample

frequency.

The concept driving the control algorithm design is summarized in Figure 3.3. A

measurement of the vehicle orientation is compared with a desired orientation and the

error is formed. The control law, D(z), takes this error and calculates the necessary

attach point position in order that the vehicle orientation will follow the desired path.

The digital compensator will take the form of a digital filter which will modify the

open-loop dynamics in such a way as to affect satisfactory closed-loop performance.

The model of the rotational motion of the sub-satellite, G(z), can be recognized

as the digital equivalent to a continuous simple double integrator. As a result, it is

clear that the compensator must provide phase lead in order to stabilize the open-

loop system. In addition, to help in the rejection of unmodeled and environmental

disturbances, it is fortuitous to include integral control. As a result, the control law

which will make up the digital filter D(z) will have the following form:

[ I% ] E(z), (3.88)(1- bz-')X(z) = g(1 - .z -1) + 1- J

where K is the control gain, K_ is the integral gain, and a and b are the zero and
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Figure 3.4: Large Angle Slew Root Locus

pole, respectively, associated with the lead compensator.

compensator transfer function can be shown to equal:

(l+_)z2-(a+l)z+a

D(z) = If (z - 1)(z - b)

Rearranging terms, the

(3.89)

Choosing values for the lead compensator zero and pole and the integral gain which

balance the speed of response of the system while filtering the noise in the measure-

ment, yields the following values:

a = 0.925, (3.90)

b = 0.65, (3.91)

I(----L = 0.0035. (3.92)
K

With these values chosen, the effect that the gain K has on the location of the poles

of the closed-loop system can be derived by drawing a root locus of the system for

the following standard form:

1.0035(z - 0.9591) 2 + (0.0426)2! "0.00833(z + 1)] = 0.1 + K
(z- l)(z - 0.65) (z- 1) 2 J

(3.93)

Figure 3.4 shows the root locus versus K for the system description given by Equa-

tion 3.93. The root locus shows that, for zero gain, the closed-loop poles start at

the open-loop poles of the system, z = 1, 1, 1, 0.65, and approach the open-loop
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Figure 3.5: Large Angle Slew Open-Loop Bode Plot

zeros, z = -1, 0.9591 + 0.0426j, as the gain is increased. Choosing the value of K

to be 4, yields closed-loop pole locations (shown as asterisks in Figure 3.4) to be z =

0.9431 + 0.0645j, 0.8651 + 0.1155j (which correspond to poles with damping ratios of

approximately 0.8 and 0.75, respectively). Figure 3.5 shows an open-loop Bode plot

of both the uncompensated system dynamics as well as the compensated system. For

both the magnitude and phase plots, the dashed line represents the uncompensated

system and the solid line represents the compensated dynamics. These plots show

that the compensator increased the low frequency gain, modified the slope of the 0 dB

crossover from a slope of -40 dB/decade to approximately -20 dB/decade, increased

the crossover frequency from 0.01 Hz to 0.018 Hz, and added a significant amount

of phase lead near the crossover frequency (so that the phase margin is 35 deg).

Therefore, the control law is shown to result in stable, well damped, closed-loop pole

locations and to result in a desirable open-loop transfer function (as judged from the

Bode plot) for the given system model. The bandwidth for this control algorithm is

approximately 0.02 Hz.
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Figure 3.6: Fine Pointing Block Diagram

3.2.2 Fine Pointing

Control Law

As stated previously, in order to design a high accuracy, long term, fine pointing

attitude regulation system, the DC gain of the control algorithm must be extremely

high in order to reject disturbances. In order to design such a control law, a highly

accurate system model must be available. A conceptual block diagram of the feedback

control system is shown in Figure 3.6. The figure shows that the system model consists

of both the rotational dynamics of the sub-satellite and the actuator dynamics (i.e.,

the stepper motor). In the laboratory, the linearized, differential equation which

governs the rotational dynamics of the air-bearing vehicle has been derived previously

and is shown in Equation 3.84 to be a simple, double integrator.

As shown in Figure 3.6, the actuator for the closed-loop system is a stepper motor

which drives a positioning table. The stepper motor is a constant velocity device

and is, therefore, nonlinear and difficult to model exactly. Figure 3.7 shows a typical

closed-loop attach point position path. The position of the attach point may change

during each sample period, but the magnitude of the attach point velocity is always

the same. Because of the nature of the motion, a simple first order lag has been used

to describe the attach point motion. This actuator model is experimentally verified

in Chapter 4 (see Section 4.1.5). Therefore, the differential equation which describes

the motion of the attach point can be written as follows:

rk + x = xd, (3.94)
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f

where r is the time constant of the lag model, x is the previously discussed attach

point position with respect to the assumed mass center, and Xd is the desired attach

point position as calculated by the control law.

As was the case with the large angle slew control law, in order to reject unmodeled

disturbances, it will become advantageous to include integral control in the control

algorithm. To that end, the state vector can be augmented with the integral of the

angular orientation of the sub-satellite. A differential equation describing this integral

state takes the following form:

_=q, (3.95)

where e is the error integral in the measurement of the angular orientation of the

sub-satellite, q.

Equations 3.84, 3.94, and 3.95 can be combined to form four first-order, linear,

where x = [q _ e z] T,

_¢ = Fx + Gu, (3.96)

y = Hx,

0 1 0

0 0 0
F=

1 0 0

0 0 0

0

Fo
I

0

1
T

coupled, differential equations of the form:
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G [0001T= 7] , u = Xd, and H = [1 0 0 0]. The values of the system parameters

for the laboratory simulator have been previously discussed (see Section 2.3). Based

on the previous results, the value of Fo/I can be shown to equal _ m-lsec -2. The

control law was derived using a Linear Quadratic Gaussian (LQG) formulation, which

yields a full-state feedback control calculation. The real-time control law calculation

takes the following form:

u_ = -Kx., (3.97)

where u, is the calculated control input at sample time n, x, is the value of the above

state vector at sample time n, and K is a lx4 vector of constant control gains. In

order to perform the optimal control calculation, a standard quadratic performance

index must be specified. The index takes the following form:

/2J = [xTAx + Bu 2] dr, (3.98)

where A and B are standard weighting matrices for the system state and control

input, respectively. The feedback gains were calculated by converting the analog

system model and performance index to a digital system using MATRIXx. Then, the

standard routine for calculating digital feedback gains was invoked to perform the

gain calculation. After a few iterations (see Chapter 4), it was found that r = .2 sec,

A

B = 1 m -2, and

100 0 0 0

0 1 0 0

0 050

0 0 0 1

(where the units of the diagonal elements of A are rad -2, (rad/sec) -2, (rad.sec) -2,

and m -2, respectively) produced the best closed-loop performance (as judged by the

smallest experimentally achieved RMS value of the measured angular orientation and

from necessary bandwidth considerations) for the given system model and sensor noise

characteristics. The above gain calculation yields the following feedback gain vector:

K = [9.0820 20.4182 1.2521 0.3003], (3.99)
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with the dimensions of the elements equal to m/rad, m/rad/sec, m/rad.sec, and m/m,

respectively. This value of the gain corresponds to closed-loop root locations which

are located at z = 0.76 4- 0.2j, 0.89, -0.02.

3.2.3 State Estimator

In order to implement the digital control law shown in Equation 3.97, accurate knowl-

edge of the values of all of the state variables must be available. Instead of separately

measuring each of the states with a sensor, a single measurement, in addition to an

accurate system model, can yield the value of the state vector at each sample time

(hence the phrase state estimation).

Three of the states, however, can be determined without estimation. The error,

e, is calculated using the simple digital equivalent of Equation 3.95 and is given by:

e,_ = e__: + Ty,_, (3.100)

where e_ is the error and yn is the angle measurement, respectively, at sample number

n, and T is the sample period. The position and velocity of the attach point at each

sample period are also available without estimation. The stepper motor is a digital

device which receives shaft position commands limited to the maximum rotation it can

achieve during a single time period. Therefore, at the beginning of the next sample

period, the velocity is zero, and the position is equal to the commanded position at

the previous sample time. The remaining states (% and qn) of the state vector are

reconstructed with the measurement, yn, of the angular orientation and the model of

the system rotational dynamics.

In order to accurately estimate the angular position and velocity of the vehicle,

it was found to be necessary to estimate the vehicle center of mass as well. A priori

knowledge of the location of the vehicle mass center is necessarily limited by our ability

to accurately measure this mass property. Figure 3.8 shows the effect of imprecise

knowledge of the location of the center of mass. If the control algorithm assumes the

mass center to be located at a point which does not coincide with the actual mass

center, the algorithm will calculate a desired position of the tether attach point (and

will locate the attach point) with respect to the incorrect center of mass. After the
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tether is moved to that point, the actual torque applied to the vehicle will be different

from the calculated (desired) value. The magnitude of this difference is equal to the

tether tension force multiplied by the difference between the actual and assumed mass

center locations. Thus, it is clear that the assumption shown in Equation 3.80 cannot

be considered valid. As a result, for the design of the state estimator, the equation

describing the rotational dynamics of the vehicle should read:

F°(x + d), (3.101)O=-y

where d is the difference between the actual center of mass and the assumed mass

center. Therefore, three states (i.e., angular position, angular rate, and mass center

location) must be estimated based upon the single angular position measurement.

A convenient methodology to implement the state estimator is known as the

Kalman Filter (see Franklin and Powell [50], Bryson and Ho [51], and Powell [52]).

The discrete system model used to perform the Kalman Filter design can be formed

by writing the Zero-Order-Hold model of the vehicle. The model takes the following

form:

x(n + 1) = Cx(n) + wd(n), (3.102)

y(n) = 7"/x(n) + vj(n), (3.103)

where x(n) = [q(n) 0(n) d(n)] T (is that part of the state to be estimated at sample
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number n), • is the state transition matrix, y(n) is the measurement at sample

number n, 7-I = [1 0 0], and wd(n) and va(n) are purely random sequences with

covariance matrices Qa and Rd, respectively. The values of wd(n) correspond to

process noise which effects the dynamic behavior of the system and the values of

vd(n) correspond to measurement noise. Equation 3.102 is derived from the following

continuous model:

= Fex + Gdw, (3.104)

where x is that part of the state vector to be estimated (i.e., [q _ tilT),

F e

0 1 0

0 0 _vo
I

0 0 0

and G d is the 3xl disturbance input influence vector. The disturbance input, w, is

modeled as a zero-mean, white noise process with spectral density Q. It can be shown

that:

(I) _- e FeT (3.105)

and

_0 TQd = (I, • G d • Q. Gd T • cT dr. (3.106)

The result of the Kalman Filter calculation is a 3xl vector of gains, L, which form

a software feedback system. The equations which are implemented are time update

and measurement update difference equations. The time update equations are:

_(n + 1)= eYe(n)+ rut(n) (3.107)

and the measurement update equations are:

_(n) = _(n) + L[y(n) - 7"/2(n)], (3.108)

where R(n) and _(n) are the values of the states before the measurement and after the

measurement, respectively, ut(n) = [x(n - 1) x(n)] T, and 1" is the control influence

vector. For the current system, it can be shown that (using the values of physical
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parameters discussed above):

1 .5 -.0083

0 1 -.0333

0 0 1

and T

F= ['0042 .0041 0].0122 .0211 0

In order to obtain some insight into the behavior of the estimator in the presence

of varying process and measurement noise magnitudes, a reciprocal root locus was

drawn numerically. This was accomplished by setting the value of Q to be unity,

varying the value of Rd, and performing the gain calculation and determining the

system pole locations for each value of Rd. After a few iterations, it was found that

the best estimator behavior could be realized by making the disturbance influence

vector take the following value:

Gd = [0 1 4] _. (3.109)

The stable part of the previously discussed reciprocal root locus is shown in Figure 3.9.

This figure shows that the three estimator roots start at z = 1, and approach the

approximate values of z = 0, -0.27, 0.88. The pole locations which afforded the

best combined controller-estimator performance correspond to a value of Rd/Q of .5

which yields estimator poles at z = 0.88, 0.66 + 0.25j, and the following estimator

gain matrix:

L = [.5632.4566 - 1.3218] T. (3.110)

Combined Estimator and Control Laws

In order to obtain a better understanding of the action of the above control algorithm,

the estimator and control law can be combined to form a discrete transfer function

from the system output (i.e., the angular orientation of the air-bearing vehicle) and

the control input to the system (i.e., the position of the tether attach point) [50]. With
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the transfer function relating the control input to the system output, a traditional

root locus of the closed-loop poles and an open-loop Bode plot can be drawn, allowing

a classical interpretation of the results of the LQG control law and Kalman Filter.

The root locus of the closed-loop poles of the system is shown in Figure 3.10. This

locus shows that the closed-loop poles begin at the open-loop poles of the system,

z = 1, 1, 1, 0.94, 0.36 i 0.36j, and approach the open-loop zeros, z = 0, -0.13,

0.91, 0.92 -4- 0.07j. The closed-loop poles (shown as asterisks in the figure) are a

combination of the estimator and control law poles, i.e., z = 0.88, 0.66 4- 0.25j from

the estimator, and z = -0.02, 0.89, 0.76 4- 0.2j from the control law.
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Figure 3.11: Fine Pointing Open-Loop Bode Plot

The open-loop Bode plots for the compensated and uncompensated systems are

shown in Figure 3.11 (the uncompensated system is the dashed line). The magni-

tude plots show that the compensated system has a -60 dB per decade low frequency

slope as opposed to the -40 dB per decade low frequency slope of the uncompensated

system (which results from the integral control) and that the overall system DC gain

is higher with the compensation. At crossover, the compensated system has a slope

of approximately -20 dB per decade and the crossover frequency is approximately

0.0275 Hz. The phase plots show that the compensated system has a phase margin

of approximately 25 deg. The compensator adds significant phase lead to the un-

compensated system so that better system performance is achieved. The closed-loop

bandwidth is approximately 0.03 Hz. The control system design is based on a sample

rate of 5 Hz, which is greater than 50 times the closed-loop bandwidth. Based on the

Bode plots, the compensated system can be expected to reject disturbances better

and respond faster than the uncompensated system, which is the ultimate goal of any

control scheme.





Chapter 4

Experimental Results

The previously described tethered satellite laboratory simulator has been used to

perform an extensive study of the attitude control system which generates control

torques by varying the tether attach point with respect to the satellite mass center.

The purpose of the study was to test the theoretical results of the previous chapter

and to determine the effect that hardware characteristics will have on the perfor-

mance of the system. This includes determining the effects of estimation, stepper

motor modeling, and linearity assumptions (as related to longitudinal and lateral

tether dynamics). All of the experiments have been performed such that finite initia!

conditions were reduced to zero. Therefore, the digital control algorithm is started

after the initial angle is adjusted to be a small, finite value, and the initial angular rate

is made close to zero. The algorithm then attempts to regulate the vehicle attitude

such that both the orientation and velocity are zero. Data are stored in the on-board

computer during system operation and are transferred to the desk top host computer

for data reduction. The rest of this chapter is divided into two sections: the first

deals with experiments performed in a disturbance free environment while the second

describes experiments performed with the inclusion of an external disturbance torque

and the simulation of the effects of longitudinal and lateral tether dynamics. The first

section, then, determines the best performance achievable given the current sensors

and actuators and the second section determines the effects of realistic environmental

disturbances which can be expected in the orbital configuration.

65
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4.1 Disturbance-Free Experiments

Testing the simulator in a disturbance-free environment provides useful insight to

the ultimate behavior of the closed-loop attitude control system. Understanding

the necessary conditions in order to achieve the very best performance and then

determining the degree to which each of the conditions affect the performance is useful

for mission planners and system designers. The disturbance-free experiments were

performed in a laboratory environment which minimized unmodeled forces external

to the laboratory simulator. That is, the experiments were performed in a very quiet

room, with the ventilation system turned off (in order to minimize room air currents).

In addition, the tether dynamics simulator was deactivated so that only the natural

mass-spring and pendular motions of the tether were present as the mechanism to

generate tension variations within the tether (which tend to be small and damp out

rapidly in the quiet environment). The disturbance free experiments were performed

to investigate the large angle slew and fine pointing behavior, to determine the effects

of varying estimator gains, to determine the extent to which the mass center estimator

is necessary, and to determine the effect of varying the physical parameter assumed

for the stepper motor model. The following sections treat the results of each of these

experiments separately.

4.1.1 Large Angle Slew

Large angle slew capability is very important for a satellite which is to serve as an

astrophysical pointing platform. Changing orientation from one target to another

relatively quickly is necessary to make as much of the orbit as possible useful for

mission purposes. In order to study the large angle slew capability of the tethered

satellite and control system described previously, experiments were performed where

the initial vehicle angular displacement was made relatively large (approximately

20-25 deg) before the control algorithm was initiated. The control algorithm was

discussed in Section 3.2.1 and consists of a lead-lag compensator and integral control.

The lead-lag compensator adds the necessary phase lead in order to stabilize the

open-loop system while attenuating sensor noise at higher frequencies. The integral
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control term was added to reject the effect of constant disturbances (i.e., steady gas

leaks, steady room air currents, etc.) by increasing the gain at low frequencies. The

sensor for the large angle slew maneuver is the phototransistor angle measurement

device (or coarse sensor) discussed in Section 2.1.5.

The results of a typical large angle slew maneuver are shown in Figure 4.1. The fig-

ure shows the closed-loop orientation of the laboratory simulator (4.1(a) and 4.1(b)),

the attach point time history which results from a typical maneuver (4.1(c)), and the

power spectral density of the orientation measurement (4.1(d)). Figures 4.1(a) and

(b) show that the initial angular displacement (approximately 19 deg) was reduced

to a narrow band of values (with an RMS value of 0.1 deg) about the 0 deg mea-

sure. The peak time is 13 seconds and the overshoot is approximately 18 percent.

This corresponds to a closed-loop system natural frequency of approximately 0.04 Hz.

These results compare well with the results of the control system analysis presented

in Section 3.2.1. Based on that discussion, for a second order system, the closed-loop

bandwidth would be expected to be 0.036 Hz and the open-loop phase margin would

correspond to approximately 30 percent overshoot. The attach point time history in

Figure 4.1(c) shows that after an initM displacement to provide a control moment to

initiate motion and a displacement in the opposite direction to stop the rotation, the

attach point begins to randomly oscillate about the 0 cm displacement measure and

the average value of the attach point position is approximately 0 cm. The random

oscillations are a result of the control system reacting to the relatively large amount

of noise present in the measurement. Tile graph of the power spectral density of

the vehicle orientation in Figure 4.1(d) shows a relatively flat function for low fre-

quencies (below the bandwidth) and significant attenuation for frequencies above the

bandwidth.

The physical system responds with transient characteristics which are slightly

better than those expected from the theoretical analysis. This situation likely arises

because the physical system is not a second order system, but rather a fourth order

system which possesses a more complicated transient response, and air-bearing sup-

port forces were ignored in the analysis (which would tend to increase the expected

value of damping). Also, simulations performed with MATRIXx (see Figures 4.1(a)
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Figure 4.1: Typical Large Angle Slew Results
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and (b)) show that for sensor noise modeled as a white process with a normal distri-

bution and an RMS value equal to the actual sensor, the behavior is virtually identical

as that obtained for the physical system (i.e., approximately equal peak times, over-

shoot percentages, and steady state RMS values). In addition, since the linear model

is the result of a series of approximations, the model is not an exact representation of

the system dynamics. The approximations can certainly be responsible for any of the

small discrepancies between the results of the theoretical analysis and the physical

experiment.

4.1.2 Fine Pointing

In order for a satellite to serve as a useful astrophysical pointing platform, it must

provide a very stable base from which observations can be made. Lemke [42] dis-

cusses the requirements for a modern space-based telescope and concludes that an

observational platform for such a telescope must provide stability on the order of

1 arcsec in order to fulfill the mission requirements. A series of experiments were

performed to test the ability of the control algorithm, as implemented on the labo-

ratory simulator, to provide a long term, high accuracy pointing platform as a base

for astrophysical observations. The goal of these initial tests was to determine the

best possible behavior in the most disturbance free environment possible. These re-

sults will serve as the basis from which observed behavior in the presence of realistic

disturbance forces can be judged. The control algorithm which was implemented for

the fine pointing experiments was described in Section 3.2.2 and the autocollimator

described in Section 2.1.5 was used to make the real-time angle measurements. The

control gains used in the algorithm are given by Equation 3.99. The estimator gains

were based on a noise covariance ratio (Rd/Q) of 0.5 and resulted in the values given

in Equation 3.110.

Results of a typical fine pointing attitude control experiment are shown in Fig-

ure 4.2. This figure shows the time histories of the estimate of the vehicle orientation,

(_(n), the attach point position (with respect to the assumed mass center), the error

in the time update estimate of the angle, re(n) = q(n) - _t(n), and the power spectral
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density of the estimated attitude. The time history of the estimated vehicle orien-

tation (Figure 4.2(a)) shows that the initial orientation (approximately 80 arcsec) is

reduced to a narrow band of values about the 0 arcsec measure in 100 seconds. The

peak time is 25 seconds and the overshoot is approximately 5 percent. This corre-

sponds to a closed-loop bandwidth of approximately 0.03 Hz. The RMS value of the

measured attitude from 200-500 seconds is 0.60 arcsec and the average value over

that time period is 6.6 x 10 -3 arcsec. The attach point time history (Figure 4.2(b))

shows that after an initial large step to start the angular motion, the position returns

to a narrow band of values about the -0.6 mm measure. The random motion of the

position is a result of the control algorithm reacting to sensor noise and the non-zero

steady-state average value is the result of a difference between the assumed and actual

mass center locations (as is calculated by the mass center estimator). The error in the

time update estimate of the angle (Figure 4.2(c)) shows that after the first 100 sec-

onds, the estimate converged to the measured value (within sensor limitations). The

RMS value of the error for the time between 200-500 seconds can be calculated to

be 0.75 arcsec and the average value during that time period is 7.5 x 10 -4 arcsec.

The power spectral density of the angle estimate (Figure 4.2(d)) shows a fiat func-

tion for frequencies below the bandwidth and attenuation for frequencies above the

bandwidth. Also, the mass-spring mode of the air-bearing vehicle and tether/spring

system is clearly evident through the relatively large spike at 0.3 Hz, which is the

previously calculated laboratory mass-spring mode natural frequency (see Table 2.1).

These observed results compare quite well with the theoretical results obtained in

Section 3.2.2. In addition, a FORTRAN simulation of the dynamic behavior (based

on the subroutine shown in Appendix A.2) of the closed-loop system yielded results

which were virtually identical to the observed behavior of the laboratory simulator.

The peak times, the overshoot, and the steady-state RMS values were all within 10%

of the measured values for the laboratory simulator.



CHAPTER 4. EXPERIMENTAL RESULTS 71

15 (a) o

_ 10 i -0.5

5 -1

r,1
o 0 -1.5

"0

2

-5 -2
0 5OO

5v

E

o
"_ -5

•_ -10
0

Time (sec)

10 (c)

(b)

0

k,k t_ iLl* :JJ_h._-,=Mk i ..la..k.,..a -

Time (sec)

_'o 10-2

<

10 -5

¢¢1

lO-g

10-11
10-3

500

500

Time (sec) Frequency (Hz)

(d)
:::::::::::::::::::::::::::::::::::::::::::::::......_: _::::_:;__
:::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::::::::::: ::_-

_.-.b._ ).?_._

10-2 10-1 10 o

Figure 4.2: Typical Fine Pointing Results



CHAPTER 4. EXPERIMENTAL RESULTS 72

4.1.3 Effect of Estimator Gains

The discussion of the derivation of the state estimator (see Section 3.2.2) showed how

the process and sensor noise models played a key role in determining the numerical

values of the estimator feedback gains. In fact, Figure 3.9 presents a root locus

of the estimator roots as a function of the ratio of the sensor and process noise

covariances. To determine the effect that different assumed values for the ratios of the

sensor to process noise covariances would have on the closed-loop system performance,

a series of tests were performed where the noise covariance ratio (i.e., Rd/Q) was

varied for purposes of computing the estimator gains. Increasing this ratio moves

the root locations along the root locus shown in Figure 3.9 from the open-loop poles

(in this case three roots at z = 1) towards the open-loop zeros (calculated to be

z = 0,-.27,.88). Increasing the covariance ratio causes the estimator to converge

to the actual state value more rapidly, but the faster convergence can amplify the

sensor noise unnecessarily. The goal, then, is to choose estimator root locations

which allow timely state convergence yet maintain reasonable sensor noise filtering.

This balancing is most easily performed with an extremely accurate system model

and was the motivation behind the mass center estimator discussed previously.

Results of the different tests performed with the experimental system and varying

values of estimator gains are summarized in Table 4.1. This table shows the ratio

of sensor noise covariance to process noise covariance (Rd/Q) used in the estimator

gain calculation, the RMS value of the steady state estimate of angular orientation

(@(n)), and the RMS value of the error in the estimate of angular orientation before

the measurement (re(n) = q(n)-@(n)). The estimate of the angular orientation gives

a quantitative measure of the performance of the closed-loop system (i.e., control law

and estimator) and the error in the estimate of the angular orientation before the

measurement provides a quantitative measure of the performance of the estimator

implementation. The results shown in the table support the thesis that varying sen-

sor and process noise models will effect the behavior of the estimator and closed-loop

system. Small values of the covariance ratio result in relatively poor estimator and

closed-loop system performance. This results from the slow (sluggish) response time

of the estimator and too great a reliance on a model which may not be 100% accurate.
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R /Q
0.01

0.05

0.10

0.50

1.00

5.00

10.0

(_(n) (arcsec) re(n) (arcsec)

1.11 1.07

0.86 O.75

0.71 0.74

0.60 0.75

0.70 0.94

0.78 1.58

0.84 1.98

Table 4.1: Effect of Estimator Gains on RMS Performance (nominal Rd/Q = 0.5)

Large values of the covariance ratio also result in relatively degraded performance.

This results because of the small amount of sensor noise filtering provided by an es-

timator with a relatively fast (quick) response time. The mid-range values of those

shown result in fairly equal estimator performance, but slightly different closed-loop

system behavior. The performance of the estimators are all basically equivalent be-

cause they filter sensor noise roughly equally. The closed-loop system behavior is

different because of the location of the estimator roots with respect to the controller

root locations. For the 0.01, 0.05, and 0.10 values of Re/Q, the estimator root loca-

tions correspond to an estimator which is slower than the controller roots, whereas

when Rd/Q >_ 0.50, the estimator roots correspond to an estimator which is faster

than the controller. An estimator which is slower than the controller can cause slightly

degraded closed-loop performance in the response to step commands and unmodeled

disturbances because the control calculation will be based on a state estimate which

does not respond as quickly as the controller responds.

4.1.4 Effect of Mass Center Estimation

The derivation of the state estimator in Section 3.2.2 includes a qualitative argument

justifying the need for estimation of the center of mass of the sub-satellite in order

to perform long term, high accuracy pointing. In order to determine, quantitatively,

the effect of the mass center estimator, a series of tests were performed without

the implementation of the mass center estimator. The center of mass of the vehicle
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was accurately located (to within 0.05 mm) with respect to the center of the vehicle

base plate using the results of the mass center estimator implemented in Section 4.1.2.

Then, for purposes of this study, the mass center location was assumed to be different

from the known location. Two tests were performed, one with an intentional mass

center misalignment of approximately 0.10 mm and the other with the misalignment

intentionally set to 0.40 rnm. The control gains were made the same as those discussed

in Section 3.2.2. The estimator, without mass center estimation, can be derived by

changing the value of the disturbance influence vector given in Equation 3.109 to

equal the following value instead:

(]d = [0 1 0] T. (4.1)

The effect of this change on the estimator is that since there is no model of process

noise disturbing the location of the mass center, the Kalman Filter will assume that

the initial location is, in fact, the actual mass center location (effectively an oblivious

filter) and the estimator gain associated with this state will be zero. The reciprocal

root locus for the current system can be drawn in the same manner as that shown in

Figure 3.9. The result will be almost identical to the root locus shown in that figure.

The one difference will be that the root which travels left along the real axis in the

figure will remain located at the z = 1 point for all covariance ratios. The remaining

two roots traverse the same locus as shown previously, although locations along the

locus correspond to different noise covariance ratios. Experiments were performed

with estimator gains calculated from various covariance ratios in an effort to judge

the effect of estimator speed of response in addition to the mass center estimation.

Results of these tests are summarized in Figures 4.3 and 4.4. Figure 4.3(a)

shows the closed-loop attitude angle estimate before the measurement (q(n)) and

Figure 4.3(b) shows the error in the estimate before the measurement (re(n) =

(q(n)- _/(n))) as a function of time for the experiment with an intentional mass

center misalignment (d) equal to 0.40 mm and a value of Rd/Q equal to 5.0. As

expected, the mass center misalignment caused the control algorithm to calculate

attach point locations which did not provide the necessary control torques to zero

the attitude of the vehicle. For the time between 200 and 500 seconds, the average
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Figure 4.3: Results Without Mass Center Estimation (with CM error of 0.4 ram)

value of the attitude estimate is -2.05 arcsec, the RMS value of the attitude estimate

is 2.21 arcsec, and the RMS value of the error in the angle estimate is 2.86 arcsec.

This is in sharp contrast to the comparable values obtained for the case with the mass

center estimator. The degradation in performance results from the effect discussed in

Section 3.2.2 and summarized in Figure 3.8. That is, the actual control torque applied

to the vehicle differs from the desired value because of the mass center misalignment.

Figures 4.4(a) and (b) show the absolute value of the angle estimate before the

measurement, _(n), as a function of mass center misalignment for various values

of the noise covariance ratio, Rd/Q, and the RMS value of the attitude estimate

before the measurement, (?(n), as a function of noise covariance ratio for two values

of mass center error, d. The values shown in the figures make physical sense. The

tests performed with a smaller mass center misalignment would be expected to show

better behavior than the case where the center of mass misalignment was larger.

The smaller the misalignment, the smaller the difference between the actual and

desired control torques, the smaller the error in estimating the state. This should

yield smaller mean square and average values of the attitude error. In addition,

higher estimator gains (which correspond to a higher noise covariance ratio) force the

Kalman Filter to rely less on the system model and more on the given measurement. A

deemphasis of the model will produce smaller estimator errors, translating into better

performance. It should be noted, however, that blindly increasing the gains of the
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estimator can have detrimental effects, as can be seen in Figure 4.4(b). Increasing the

covariance ratio benefits the operation of the control system until the ratio approaches

a value of approximately 5. At this point, the estimator is amplifying the noise in the

measurement unnecessarily. The purpose of low estimator gains is to filter the noise

of the measurement by balancing the knowledge gained from each measurement with

a priori knowledge of the system (i.e., the system model). A very accurate system

model allows lower gains and, therefore, more filtering of the measurement. A good

estimator will possess the lowest possible gains (the highest possible filtering) and the

most accurate model available.

It should be noted, that the mass center misalignments measured in the laboratory

are quite small with respect to a characteristic dimension of the vehicle (on the order

of 0.01% and 0.04%, respectively). For a realistic satellite implementation, a 1% of

a characteristic dimension misalignment would not be unexpected. As a result, the

effect of mass center misalignment in a practical application can be on the order

of 100 times greater than the effect measured in the laboratory (i.e., on the order

of 100 arcsec). Clearly, mass center estimation should be an integral part of a high

accuracy tethered satellite attitude control system which generates control torques by

varying the attachment of the tether with respect to the mass center of the vehicle.
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T (see) 0(")rm, (arcsec) m(n)rm (arcsec)
0 1.59 1.26

0.01 0.75 1.06

0.02 0.73 0.98

0.20 0.60 0.75

2.00 0.66 1.24

4.00 0.70 1.32

Table 4.2: Summary of Tests Varying Motor Time Constant

4.1.5 Effect Of Stepper Motor Model

The linear model of the stepper motor was discussed previously in Section 3.2.2.

Figure 3.7 qualitatively summarizes the need for attach point motion modeling. The

linear model chosen to represent the dynamics of stepper motor motion is shown in

Equation 3.94 to be a simple first order lag which is characterized by the time constant,

r. In an effort to determine the quantitative effects of varying the model of the stepper

motor dynamics, a series of tests were performed with compensators designed by

assuming various values of the time constant. When designing a compensator, the

value of r effects both the feedback control gains, K, and the control influence vector,

r. The feedback gains were calculated with the same state and control weighting

matrices (A and B, respectively) as the nominal case discussed in Section 3.2.2. In

addition, the estimator gains were identical to those shown in Equation 3.110.

The results of these tests are shown in Table 4.2. The table shows that varying the

time constant of the stepper motor does indeed affect the behavior of the closed-loop

system and the performance of the state estimator. The best response is obtained

when r = 0.2 seconds, which corresponds to the vehicle attitude time history shown in

Figure 4.2. The worst response, as can be expected, corresponds to the case where the

dynamics of the stepper motor are ignored (i.e., r = 0 seconds). All other values of

r which were tested resulted in closed-loop systems with measured angle RMS values

that are less than 1 arcsec. However, the estimator performance, as judged by the

RMS value of the error in the angle estimate before the measurement, was affected
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to a greater extent. The increase in sensitivity of the estimator is due to the fact

that varying the model varies how well the model represents the physical mechanism

and since the angle estimate before the measurement was used to compare the model

performance, the sensitivity is heightened. The control input, on the other hand, is

calculated based on the state estimate after the measurement, which is the less model

sensitive (because of the fresh state information contained in the measurement) of

the time and measurement update state vectors.

Figures 4.5(a)-(d) provide a visual representation of the physical significance of

modeling the nonlinear stepper motor with a linear differential equation. The figures

show the actual motion of the attach point and the attach point motion modeled as

a low pass filter (with r = 0.2 seconds) for cases when the desired motion during one

sample period takes on the values of 1 in (a), 0.5 in (b), 0.1 in (c), and 0.02 in (d).

The figures show that the model is not an exact representation of the attach point

motion, and that the differences between the actual and modeled motion depends on

the size of the desired motion. This tendency arises due to the strong dependency of

the actual motion on the size of the input. The results and discussion emphasize the

fact that care must be taken when modeling nonlinear devices with linear differential

equations.

4.2 Fine Pointing With Disturbance Torques

While the disturbance-free experiments provide important insight into the design of

a system employing the previously discussed attitude control concept, a complete

investigation must study the effect of disturbances applied to the sub-satellite from

the parent spacecraft through the tether. He [31] discusses simulation results obtained

by modeling the three dimensional deployed configuration of a tethered satellite which

implements an attitude control system based on a movable tether attach point. An

important conclusion from these simulations is that the yaw axis control device (most

likely a momentum wheel) can create an offset between the vehicle mass center and

the steady-state tether attach point. This offset, in Conjunction with magnitude and

direction variations in the tether tension, is responsible for the largest disturbance
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torque applied to the vehicle. As secular yaw disturbances are controlled with the

momentum wheel, the wheel will store a significant amount of momentum in the

orbit plane. This momentum, when rotated in the orbit plane, induces a torque

about the roll axis of the sub-satellite. The magnitude of the roll torque builds up as

the momentum stored in the momentum wheel increases, and will only decrease if a

momentum dump maneuver is instigated. He [31] also describes a method to dump

the momentum when the wheel saturates or when it is deemed appropriate for system

performance.

In the current laboratory work, the primary concern is to determine the effects of

both the lowest order longitudinal oscillation (mass-spring mode) and the lowest order

lateral oscillation (first string mode) on attitude errors of the tethered spacecraft.

These tether dynamics, in essence, effect the satellite in the form of a complicated

combination of tether tension variations (in both magnitude and direction). The

combination of these tension variations can be calculated with the mathematical

models developed by He [31]. Therefore, tile method employed in the current work,

will be to verify the behavior of the attitude control system in the presence of tether

tension magnitude and direction variations. Then, these variations can be combined

in the proper ratio (as determined by He's model) to predict behavior of the proposed

orbital mission.

The following sections separately discuss the analytic description of the distur-

bance torque generation, the effect of a constant disturbance torque on the perfor-

mance of the closed-loop system, the simulation of tether tension magnitude and

direction variations and their effect on the attitude control algorithm, the effect of

the combined tether dynamics on the attitude control performance, the effect of the

mass center estimation on performance in the face of disturbances, and the imple-

mentation of a variable tension scaling scheme (as proposed by Lemke [42]).

4.2.1 Disturbance Torque Generation

For spacecraft with an altitude less than 400 km, the aerodynamic torque is the

dominant environmental disturbance torque applied to the vehicle [49]. A simplified

model of the aerodynamic surfaces of a tethered spacecraft is shown in Figure 4.6.
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This figure shows a six sided rectangular solid with dimensions as shown. The hi,

h2, and b__ vectors are a right handed set of mutually orthogonal reference axes fixed

in body B. b 1 points in the nominal tether direction (yaw axis), _b2 points in the

direction of travel of the mass center of B (roll axis), and b_3 is perpendicular to the

orbit plane (pitch axis). The magnitude of the aerodynamic force applied to the body

in the h2 direction, F,_o, is given by (assuming the rotation rate of the vehicle with

respect to the tether is sufficiently small):

F_o = 1CDA2p[v__B" 1, (4.2)

where Co is the drag coefficient of the vehicle moving along b2, A2 is the area of the

surface perpendicular to the h2 axis, p is the atmospheric density through which the

vehicle travels, and v s. is the relative velocity of the center of mass of the vehicle

with respect to the on-coming air. With Co _ 2, As = 2.6 m 2, p _ 10 -13 kg-m -3,

and Iv_s'] _ nRo _ 6500 m-sec -1 (where Ro is the orbit radius and n is the orbit

rate), F_o = 1.0 x 10 -s N. The moment about the b_ (yaw) axis, M_, is given by:

M1 = F_o_53, (4.3)

where $3 is the point, relative to the center of mass of the vehicle, in the b__3direction,

through which the aerodynamic force acts. Assuming that _3 is 1% of the length of

the vehicle side parallel to b_a, and substituting the value for F_o shown above into

Equation 4.3, it can be shown that M1 _ 2.0 x 10 -7 N-m.

The magnitude of the momentum stored in the wheel parallel to the yaw axis, hi,

is given by the following differential equation,

hi = M1. (4.4)

Since M1 is assumed constant,

h_ = ;lilt, (4.5)

where t is the time measured in seconds. The torque due to the momentum wheel

about the b 2 axis, T2, is the product of the orbital rate and the momentum stored in

the wheel, and is given by:

T2 = Mint. (4.6)
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Figure 4.6: Simplified Aerodynamic Model of Sub-Satellite

Figure 4.7 is a graphical representation of Equation 4.6 with respect to time (mea-

sured in the number of orbits). This figure shows that the roll torque grows linearly

from a zero value at zero time to slightly less than 3 x 10 .4 N-m after 200 orbits.

Figure 4.7 also provides a simple guide to the timing of momentum wheel desat-

uration maneuvers. For each value of roll torque, the momentum can be dumped

after an easily calculated number of orbits. For example, if 5.5 x 10 .5 N-m is the

largest tolerable disturbance torque, a maneuver to dump the momentum stored in

the wheel after every 40 orbits (approximately once every other day) will ensure that

the disturbance torque never exceeds this threshold value.

4.2.2 Effect of Constant Disturbance Torques

In order to observe the behavior of the tethered satellite attitude control system

based on a movable tether attach point in the presence of a constant disturbance

torque, the air-bearing simulator was outfitted with a small fan. The fan is mounted

approximately 0.5 m from the center of mass, so that when it is turned on, a constant

torque is applied to the vehicle. The results of these tests are expected to show

that the closed-loop attitude response of the vehicle will be unchanged from the
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Figure 4.7: Total Roll Disturbance Torque

results obtained in the disturbance free environment. A number of experiments were

performed with the fan blowing in such a manner that it applied a constant torque of

magnitude 5 x 10 .4 N-m to the vehicle. The initial state of the system was configured

such that the angle and angular rate was made as small as possible and the fan was

running (i.e., applying a force to the simulator). Figure 4.8 shows the typical results of

a test performed with the fan blowing and the tether dynamics simulator deactivated.

The figure shows the time histories of the estimated attitude of the vehicle (q), the

attach point position with respect to the assumed mass center location, the error

in the estimate of the angle before the measurement (m), and the power spectral

density of the estimated orientation. The figure shows that the response of this

system is virtually identical to the case where no external disturbance was applied to

the vehicle (see Figure 4.2). This result is completely consistent with expectations

of the system behavior and will be explained below. The initial small angle error is

reduced to a random fluctuation about the 0 arcsec measure in 100 seconds. The

peak time is approximately 25 seconds and the overshoot is 25 percent. The RMS
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value of the attitude measurement from 200-500 seconds is 0.71 arcsec and the average

value over that time period is 0.017 arcsec. The time history of the error in the angle

estimate before the measurement is very similar to the case with no disturbance

torque. The estimate converges to the measured value in less than 75 seconds and for

the period between 200-500 seconds, the RMS value is 0.88 arcsec, and the average

value over that period of time is 0.0021 arcsec. The tether attach point time history

is slightly different than the result obtained without an external disturbance. The

steady state average value is approximately -0.35 mm (which is smaller than the

disturbance-free result because of a smaller initial mass center misalignment) and

the transient response shows a clear convergence to the steady-state value (which

was absent in the disturbance-free case). The finite convergence time is the result of

the mass center estimator calculating an 'effective' mass center location, one that is

the combination of the initial mass center misalignment (as in the disturbance-free

case) and the effect of the constant disturbance. Essentially, the constant disturbance

torque is modeled as a mass center misalignment in the Kalman Filter equations and

the estimator must converge to the correct 'effective' mass center. This can be seen

by modifying the differential equation used to model the rotational dynamics of the

vehicle (see Equation 3.101) to include a disturbance torque term. Therefore, the

equation of motion for the rotational system will read:

/j = -_(x + d)+ Md, (4.7)

where Md is the disturbance torque applied to the vehicle. This disturbance torque

can be represented as a force multiplied by the appropriate distance to keep the torque

magnitude constant. If we choose the force to be equal to F0, the disturbance torque

can be expressed as:

Md = Fodd, (4.8)

where dd is the 'effective' offset from the mass center of the tether needed to generate

the necessary disturbance torque. Combining Equations 4.7 and 4.8 directly yields

the following equation:

= .f.?-[x+ (d + dd)l. (4.9)
1
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In this form, it is clear that the disturbance torque can be modeled exactly as a

mass center misalignment. As a result, the fact that the attitude response should be

the same both with and without a disturbance torque follows because the mass cen-

ter estimator provides integral action which behaves precisely the same, independent

of whether the disturbance is a mass center error (as in Figure 4.2) or a constant

disturbing force (as in Figure 4.8). The power spectral density of the angle measure-

ment shows the characteristic flat response at low frequencies (below the bandwidth)

and attenuation at frequencies above the bandwidth. In addition, the small spike at

0.03 Hz can be attributed to the convergence time of the mass center estimator. Also,

the mass-spring mode of the satellite and tether/spring system is also visible through

the small rise at 0.3 Hz.

4.2.3 Tether Force Magnitude Variations

As discussed previously, the introduction of natural tether dynamics into the labo-

ratory simulation is quite important in determining the ultimate effectiveness of a

tethered satellite attitude control system based on a movable tether attach point.

The goal of the following sections is to determine the behavior of the attitude control

system when the force applied to the simulator by the tether varies in magnitude only.

In order to introduce the type of tether force magnitude variations (that would be

expected in orbit) to the laboratory simulator, it is necessary to have a good model of

the orbital tether and the interaction of the tether and movable attach point control

system. To achieve this end, a detailed mathematical model of the orbital system

was developed by He [31]. The model is based on a continuous beam description of

the tether and it is used to implement a three dimensional (six degree of freedom)

simulation of the complete tethered satellite system (including longitudinal, and in-

plane and out-of-plane lateral tether dynamics) in MATRIXx. This mathematical

model and computer simulation were used to determine the dominant frequencies of

the tether tension magnitude variations which can be expected in the orbital config-

uration.
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Laboratory Simulation

With knowledge of the dominant frequencies of variations in tether tension magnitude,

the tether dynamics simulator discussed in Section 2.2 can be used to implement the

expected tension variations in the laboratory. The tether dynamics simulator will be

configured such that the wall attach point will follow an oscillatory path in the nominal

tether direction (i.e., along the local vertical). If we assume a fixed tether attach point

on the sub-satellite, the configuration of the air-bearing vehicle suspended in the

micro-gravity field with a tether/spring which is attached to a movable wall attach

point can be modeled (ignoring the damping effects of the air-bearing and spring

material) simply as the system shown in Figure 4.9, where Yo = mg'/k. The transfer

function between motion at the wall and motion at the sub-satellite end, Hy,(s), is

simply:
,2

a_m (4.10)
= s2

where s is the Laplace Transform variable and wm= k_ is the natural frequency

of the mass-spring system. The transfer function between tension variations in the

spring and wall motion, HalF,(s), is given by:

--k,S 2

HdF_(s) = k[H_,(s)- 1]- s2 +w_" (4.11)

A Bode magnitude plot of the above transfer function for the laboratory simulator is

shown in Figure 4.10. This plot shows the correspondence between wall attach point
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oscillations and tether tension variations. Wall attach point motions will generate

tension magnitude variations in the tether/spring which are of the same frequency

as the wall motion and the magnitude will be scaled, dependent on the wall motion

frequency (i.e., as is shown in the Bode diagram). The natural frequency of the

mass-spring mode can be seen to be 0.3 Hz. The spring constant was chosen so that

the laboratory natural frequency would be approximately one order of magnitude

greater than the orbital case (see Section 2.3). This was done so that when the wall

attach point is used to generate tension variations, the motion of the air-bearing

simulator would be well behaved. If the laboratory mass-spring frequency were made

very close to the desired experimental tension magnitude variation frequency (which

is determined from the orbital system model) the simulator would undergo extremely

large motions for very small wall attach point motions. This is undesirable for two

reasons. First, the simulator motions would be so large that the edge of the vehicle

would pass the edge of the granite support table, which would introduce significant

unmodeled dynamic behavior. Second, when a mass/spring system is excited at it's

natural frequency, the resulting behavior is largely determined by the damping in the

system (i.e., in the spring and in the air-bearing suspension system), a quantity which

is very difficult to determine accurately.

Finally, the discussion in Section 2.3 called attention to the fact that the charac-

teristic response time (bandwidth) of the orbital case is somewhat different than that

for the laboratory simulator. Therefore, it will be necessary to correlate the frequen-

cies of the disturbances expected in orbit to properly scaled values in the laboratory

configuration. In order to make this correlation, it is important to realize that the

spacing, in the frequency domain, between the system bandwidth and the tether ten-

sion variation frequencies are important quantities. As a result, in order to translate

the orbital disturbance frequencies to laboratory frequencies, the ratio of bandwidth

to disturbance frequency was made invariant. Therefore, the procedure to determine

the frequency at which to oscillate the wall attach point motion is as follows:

1. Determine the dominant orbital tension magnitude variation frequency from

the mathematical model and computer simulation developed by He [31].
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Figure 4.10: Bode Magnitude of Longitudinal Tension Variations to Wall Attach

Point Motion

2. Determine the frequency at which the wall attach point mechanism should be

oscillated. This is determined by scaling the frequency derived in Step 1 by the

ratio of the laboratory bandwidth to the orbital bandwidth.

The result of this procedure for tension magnitude variations yields a frequency of

0.025 Hz in the orbital case, which translates to a frequency of 0.033 Hz for the

necessary tension magnitude variations in the laboratory case.

Frequency Response

The effects of tension magnitude variations of the tether on the performance of the

attitude control system based on a movable tether attach point can be summarized

by considering the frequency response between tension magnitude variations and the

ability to control the sub-satellite orientation. The differential equation which de-

scribes the rotational motion of a tethered sub-satellite was derived previously in
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Equation 3.74 and reads as follows:

1

_3 = y_ [I_F,I(x + d)(c, c3 + s,s3) - bTu3]. (4.12)

Recalling that q3 = u3 and making the substitutions q - q3 and I - I3 to simplify

notation, Equation 4.12 can be rewritten as:

I@= ILl(x + d)(c.cq+ br . (4.13)

To perform high accuracy orientation control while simulating tether tension varia-

tions, it can be observed that #, q, and _ will all be small. In addition, since the

control system will calculate the actual mass center location, d will also be small.

Finally, the magnitude of the tether tension, I_Ftl, can be written as in Equation 3.78

to emphasize the steady component and zero mean variation superimposed on the

nominal tension value (which arises from the micro-gravity acceleration). As a result,

Equation 4.13 can be simplified to read:

I/j = (F0 + dF)x, (4.14)

where F0 = mBg', dF is the zero mean randomly oscillatory component of the tether

tension (i.e., magnitude variation), and x is the position of the tether attach point with

respect to the vehicle mass center. For the situation where a constant disturbance

torque will be applied to the sub-satellite, the steady-state position of the attach

point can be described by a nominal constant value and a small, zero mean oscillation

about the nominal value. The nominal value will be a function of the disturbance

torque magnitude and nominal tether tension value (Fo). Therefore, the attach point

position with respect to the sub-satellite mass center can be written as:

x -- Xo+SX, (4.15)

T2
Xo- Fo' (4.16)

where T2 is the magnitude of the roll torque induced by the momentum stored in the

momentum wheel used for yaw control and 5X/Xo << 1. Further, Equations 4.14 and

4.15 can be combined and simplified (ignoring products of small terms) to yield:

I_ = (Fo + dF)(xo + 5x) _ Fox + dF Xo. (4.17)
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Figure 4.11: Block Diagram of Vehicle Orientation Related to Tether Tension Mag-

nitude Variations

For the regulator case, a compensator transfer function, D(z), between the measured

orientation of the vehicle and the attach point position of the tether with respect

to the mass center can be derived. Given that compensator transfer function, a

transfer function between tension magnitude variations and vehicle orientation can

be derived. A block diagram of this system is shown in Figure 4.11. G(z), is the Z-

transform transfer function from applied control torque to vehicle orientation. A Bode

magnitude plot of the transfer function between q and dF is shown in Figure 4.12

for G(z) given in Equation 3.87, F0 equal to 2 N (as discussed in Section 2.3), 7"2 is

5.5x 10 -° N-m (as discussed in Section 4.2.1), x0 can be calculated from Equation 4.16

to be 2.75 x 10 -s m, and D(z) is discussed in Sections 3.2.2 and 3.2.3 and can be

expressed approximately as:

z(z - 0.91 )[(z - 0.92) 2 + (0.07) 2] (4.18)
D(z) = (z- 1)(z - 0.94)[(z - 0.36) 2 + (0.36)2] .

The Bode plot shows that for all frequencies, a significant amount of attenuation of

tension magnitude variations can be expected. The least amount of attenuation occurs

at frequencies very near the closed-loop bandwidth and high levels of attenuation

should occur at both high and low frequencies (with respect to the system bandwidth).

A series of experiments were performed to verify the previous analysis and to

determine the applicability of the Bode magnitude plot shown in Figure 4.12. The

attitude control system was set to respond in the regulator mode, the fan on-board
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Figure 4.12: Bode Magnitude of Transfer Function Between Tension Magnitude Vari-

ations and Vehicle Orientation

the air-bearing vehicle was turned on, and the tether dynamics simulator was used to

shake the wall attach point at a specified frequency and amplitude. This procedure

was repeated for three different wall motion amplitudes and three different wall motion

frequencies. The results were then scaled to reflect the maximum level of disturbance

torque expected in the orbital case (i.e., 5.5 x 10 .5 N-m) and scaled to be represented

as a percentage tension variation as can be calculated from the Bode magnitude plot

shown in Figure 4.10. Simultaneously, the load cell on the air-bearing vehicle was

employed to verify the Bode magnitude of the transfer function relating tether tension

variations to wall attach point motion.

The results of the experiments are summarized in Figure 4.13. Figure 4.13(a)

shows three separate frequencies of the wall oscillation: the x and solid line corre-

spond to a wall frequency of 0.017 Hz, the o and dash-dot line correspond to a wall

frequency of 0.033 Hz, and the + and dashed line correspond to a wall frequency

of 0.067 Hz. The symbols (x, o, and +) correspond to the measured data and the

lines (solid, dash-dot, and dashed) correspond to lines fit to the measured data in a
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Figure 4.13: Results of Tests With Tension Magnitude Variations and a Disturbance

Torque of 5.5 x 10 .5 N-m

least squares sense. These three frequencies were chosen with the following reasoning:

since the tension magnitude variation frequency for the orbital case, scaled to reflect

the difference between the orbital and laboratory bandwidths, is 0.033 Hz, the behav-

ior of the transfer function model at and near this frequency is of greatest interest.

Therefore, experiments were performed at that frequency and at frequencies a factor

of two both above and below that frequency. This will provide confidence in the

transfer function model of the closed-loop system between vehicle angular orientation

and tension magnitude variations. In addition, higher frequencies were not chosen be

cause of the effect summarized in Figure 4.10. That is, as the oscillation frequency

approaches the mass-spring frequency of the laboratory simulator, undesirable be-

havior will result yielding useless data. Figure 4.13(a) shows that the measured RMS

attitude increases linearly with increasing tension variation. The vehicle orientation

is affected by torques generated by the product of tension variations and the steady-

state attach point offset. As the tension variations increase, it is expected that the

attitude errors will also increase. The values of the measured RMS attitude are less

than 1 arcsec for tension variations less than about 7.5% of the nominal tether tension.

Further, these data have been superimposed on the same frequency domain plot

as is shown in Figure 4.12. This representation is shown as Figure 4.13(b). The solid

line corresponds to the Bode magnitude shown in Figure 4.12. The symbols (x, o1 and
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+) correspond to average values of each of the data taken at the different frequencies.

The x, o, and + symbols correspond to the results obtained for wall attach point

frequencies 0.017, 0.033, and 0.067 Hz, respectively. The frequency domain plot

shows that the experimental data lie within 10% of the theoretical predictions. The

data all lie uniformly above the theoretical values which suggests that there is a small

discrepancy between the actual DC gain and the calculated DC gain for the transfer

function. This discrepancy can arise from any one of a number of sources, including

a difference in the value of a calculated physical parameter or a finite effect due to

the linearization of a nonlinear process.

Torque Magnitude

As discussed previously, in the orbital case, the magnitude of the disturbance torque

applied to the sub-satellite will increase linearly with time (see Section 4.2.1). The fre-

quency response results previously presented all assumed that the disturbance torque

was limited to a threshold value (5.5 x 10 -5 N-m) by occasionally instigating a maneu-

ver to dump the momentum stored in the yaw axis control momentum wheel. In terms

of mission planning, it is very important to understand the effect of allowing various

disturbance torque values to persist and to understand the effect that these torque

values will have on the long term, fine pointing ability of a tethered sub-satellite. A

series of tests were performed with varying torque levels to determine the correlation

between the disturbance torque magnitude and steady-state accuracy in the face of

tension magnitude variations.

The experiments were performed in the regulator mode, with the on-board fan set

to generate the desired torque level, and the tether dynamics simulator configured

such that it would generate laboratory tether tension magnitude variations with a

frequency equal to the scaled, expected orbital tether natural frequency and with an

amplitude equal to 5% of the nominal tension value. The applied torque values were

scaled to fit the expected orbital parameters and ranged from 5.5 x 10 -5 N-m to 5.5 x

10 -4 N-m. The results of these experiments are summarized in Figure 4.14. In the

figure, the points marked with an x correspond to actual data points and the solid line

represents a line fit to the data in a least squares sense. As would be expected, these
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5% Longitudinal Disturbance

data show that the steady-state orientation error due to increased torque values tends

to increase. The increase in measured RMS attitude is a result of the fact that with

increasing environmental disturbance torques, the moment arm through which tension

magnitude variations will generate attitude errors, also increases. The moment arm

is essentially the steady-state value of the displacement of the attach point with

respect to the vehicle mass center and, as shown in Equation 4.16, it is linearly

dependent on the magnitude of the disturbance torque. In addition, Figure 4.14

provides a convenient method for determining the direct effect of various levels of

disturbance torque on steady-state orientation control. It shows that for disturbance

torque magnitudes less than about 1 x 10 .3 N-m, the expected steady-state attitude

regulation will be less than 1 arcsec.
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4.2.4 Tether Force Direction Variations

Much of the introductory discussion of tether force magnitude variations in Sec-

tion 4.2.3 holds for direction variations as well, with a few notable modifications.

The goal of the following sections is to determine the behavior of the tethered satel-

lite attitude control system when the force applied to the sub-satellite simulator varies

in direction only. Once again, the model developed by He [31] has been employed to

determine the dominant frequencies of tether tension direction variations expected in

the orbital configuration and these frequencies were used to determine the appropriate

laboratory wall attach point oscillation frequencies. With this information available,

the tether dynamics simulator discussed in Section 2.2 can be employed to vary the

tether tension direction in a manner consistent with the expected orbital behavior.

The tether dynamics simulator will be configured such that the wall attach point

will oscillate in the direction perpendicular to the nominal tether direction, thereby

forcing pendular motions of the laboratory simulator.

Laboratory Simulation

The simulation of tether force direction variations proceeds much the same way as

for the simulation of tether magnitude variations. The goal is to make the short

laboratory tether apply lateral variations which are the same as those expected from

a 2 km long space-based tether. For the simulation of tether force direction variations,

the laboratory configuration can be modeled simply as a pendulum which possesses

significant rotational inertia (by ignoring the compliance of the tether and any forces

exerted on the air-bearing vehicle due to the flotation system). A diagram of this

model is shown in Figure 4.15. In the figure, Lt is the tether length, m is the vehicle

mass, I is the principal moment of inertia of B for the mass center, g' is the micro-

gravity acceleration,/_ is the angle between the tether and the local vertical, and w

is the motion of the tether dynamics simulator in a direction perpendicular to the

nominal micro-gravity field. A simple dynamic analysis will reveal that the transfer

function, H_,w(s), between wall motions (w) and the angle of the tether with respect
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Figure 4.15: Simplified Lateral Tether Model for Simulations

to local vertical (#) is given by:

-mL s2
H,_(s) = (mL_ + I)s: + tug'L,' (4.19)

where s is the Laplace Transform variable. After substituting the appropriate values

for the physical parameters (i.e., I = 30 kg-m:, g' = 0.008 m/s-:, m = 250 kg,

L_ = 2 m), a Bode magnitude plot can be drawn which relates the magnitude of

the angle p to the magnitude of the wall motion w, versus frequency. Figure 4.16

shows the Bode magnitude plot of the transfer function shown in Equation 4.19. The

magnitude of the angle between the tether and the local vertical is dependent on the

magnitude of the input motion at the wall and the frequency of oscillation of the

attach point. For low wall motion frequencies (i.e., less than the pendular natural

frequency), the angle between the tether and the local vertical is approximately zero.

For high frequencies (above the natural pendular frequency), the tether angle with

respect to local vertical is constant (and is approximately equal to w/Ll). In the

actual laboratory implementation, this claim is not strictly true. There will be a small

angle variation due to the motion of the attach point on the sub-satellite, which is on
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Figure 4.16: Bode Magnitude of Tension Direction Variations to Wall Input Motion

the order of 10 -4 rad for a typical fine pointing maneuver. At the pendular natural

frequency, the tether angle grows to be very large for very small wall motions. This

Bode plot allows the derivation of the necessary tether dynamics simulator motion

in order to simulate tether force direction variations as would be expected in a long,

space-based tether as follows:

1. By using the mathematical and computer model developed by He [31], determine

the lowest frequency of tether force direction variations which result from the

natural behavior of the space-based tether.

2. Scale this frequency appropriately to determine the necessary wall attach point

oscillation frequency in order to simulate the expected orbital tether force di-

rection variations. The appropriate scaling is determined (as was the case for

simulating tether tension magnitude variations) by forming the ratio of labora-

tory bandwidth and orbital configuration bandwidth. This serves to freeze the

separation, in the frequency domain, between the variation frequency and the

system bandwidth.
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3. Use the Bode diagram shown in Figure 4.16 to determine the relationship be-

tween the wall attach point amplitude and the tether tension direction variation

(#). Then, given a desired variation magnitude, it is a simple matter to deter-

mine the necessary wall attach point motion to achieve the desired tension

direction variation.

The results of this procedure for the systems of interest yields a wall attach point

oscillation frequency of 0.01 Hz. Since this is the natural frequency of the pendular

system, very small wall attach point motions will be necessary in order to achieve the

proper angular variations in tether direction. While this is not the ideal case, it is still

reasonable to expect acceptable behavior of the magnitude of the angular variations

of the tether force. To maintain the necessary accuracy, however, the actual angle

variation to wall motion was measured so that the unmodeled viscous effects of the

air-bearing, which will become significant in this case, could be quantified.

Frequency Response

As was the case for the consideration of tether force magnitude variations, the effect

of tether tension direction variations on the performance of an attitude control system

based on a movable sub-satellite attach point can be summarized by quantifying a

transfer function between tension direction variations and measured attitude stability.

With this transfer function available, a model of the tether dynamics can be used

to determine the performance of the system by calculating the expected in-plane

lateral behavior of the tether and applying those results to the transfer functions

relating attitude performance to lateral and longitudinal tether disturbances (see

Section 4.2.5). The following section describes the experimental results obtained by

introducing tether force direction variations at various frequencies to the laboratory

simulator attitude control system.

The differential equation of rotational motion of the sub-satellite was derived

previously and is repeated in Equation 4.13. While performing high accuracy attitude

regulation in addition to simulating tether force direction variations, it can be seen

that q and q are both small and that, with the mass center estimator operational, d
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will be zero. In this case, the differential equation can be simplified to yield (using

the trigonometric identity cos(a - b) = c,,cb + sash):

= IF,Ixcos( - q). (4.20)

While simulating tether tension direction variations, it can be assumed (with reference

to Equation 3.78) that the tether tension magnitude is approximately constant (i.e.,

I_.Ftl _ F0). Also, x can be written as in Equations 4.15 and 4.16 to emphasize the

steady component and a zero mean value superimposed on the nominal value. In

addition, the following approximation can be made:

cos(#-q)_cosdr_l-
d# 2

,

(4.21)

where d/t is the (small) tether tension direction variation. With these three approx-

imations, the equation of rotational motion of the laboratory simulator for tether

tension direction variations can be written as:

d#_ (4.22)
Igl = Fo(xo + 6z)(1 - --_-).

This equation can be simplified (by ignoring small terms raised to the third power)

and can be approximated to be:

dp 2
I _ = Fox - Foxo-'--_- (4.23)

For the regulator case, a transfer function (of the compensator) between the measured

vehicle orientation and the attach point position, D(z), can be calculated and is shown

in Equation 4.18. With this compensator transfer function, a nonlinear relationship

between tether tension direction variations and vehicle orientation can be derived.

A block diagram of this system is shown in Figure 4.17. A Bode magnitude plot

of the transfer function between q and v is shown in Figure 4.18 (u was chosen as

the input because it allows a linear transfer function to be drawn). The values of

G(z), Fo, T2, and x0 are the same as those used for the tension magnitude variation

transfer function. The Bode plot shows that for all frequencies, a significant amount

of attenuation of tension direction variations can be expected (for sufficiently small
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values). The least amount of attenuation occurs at frequencies near the closed-loop

bandwidth and high levels of attenuation occur at frequencies both above and below

the bandwidth.

Experiments were performed to provide experimental verification of the above

analysis so that the applicability of the frequency response plot of Figure 4.18 could

be determined. The experiments were performed with the control system in regulator

mode, turning on the on-board fan, and using the tether dynamics simulator to force

oscillatory direction variations of the tether tension. In order to provide results which

are independent of the expected orbital KITE configuration (i.e., only dependent upon

dimensionless quantities), the correspondence between the laboratory simulation and

the expected on orbit tether behavior is summarized in Figure 4.19. Due to the

short tether in the laboratory and, therefore, the very high frequencies of the natural

laboratory lateral tether dynamics, it is assumed that significant tension direction

variations occur as a result of the forced (by the tether dynamics simulator) pendular

motion. As a result, the entire laboratory tether is used to simulate the 2 m of

the space tether which is immediately adjacent to the sub-satellite (i.e., the actual

curvature is approximated as a straight line). In order to nondimensionalize the

lateral behavior, the amplitude of the wall motion is related to the amplitude of

the corresponding orbital lateral mode shape (assumed to be a half sine wave), and

scaled by a characteristic length of the given configuration. Mathematically, this can

be described by the following ratio:

w W
- (4.24)

Lt Lo'

where w is the transverse wall attach point motion, W is the maximum amplitude

of the lateral mode shape for the orbital tether, and Lt and 2Lo are the lengths

of the laboratory and orbital tethers, respectively. Therefore, the tether direction

variations can be expressed as a percentage of orbital tether half-length (because the

tension direction variation, d_u, can be related to a specific orbital lateral mode shape

amplitude, W, which can be determined from the percentage of tether half-length for

any length tether).

The results of the experiments with a constant disturbance torque (scaled to the
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maximum expected orbital disturbance torque of 5.5 x 10 .5 N-m) and various lev-

els of tension direction variations as judged by the percent of tether half-length are

shown in Figure 4.20. In the figure, the x, o, and + represent actual, scaled (to reflect

the orbital conditions) measured data points, and the lines (solid, dashed, and dash-

dot) are the straight line fits to these data in the least squares sense. Each line and

symbol represents data for a different wall oscillation frequency: the x and solid line

correspond to 0.01 Hz, the o and dashed line correspond to 0.02 Hz, and the + and

dash-dot line correspond to 0.03 Hz. These three frequencies were chosen because

the lowest frequency corresponds to the scaled, lowest order lateral frequency as is ,

calculated from the methodology developed by He [31] for the nominal KITE config-

uration. The other frequencies were chosen as corresponding to the second and third

lateral modes of the KITE orbital configuration. Since the lowest modes will have the

greatest contribution to the overall response, this section of the frequency response

shown in Figure 4.18 is most critical to verify accurately. The results summarized, in

Figure 4.20(a), show that the value of measured, steady-state orientation increased

with increased tension direction variations. This result is fully expected, since, for

a constant disturbance torque, the steady-state offset of the attach point from the
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Figure 4.20: Results of Tests with Tension Direction Variations

actual mass center location will be a constant. This constant value is the moment arm

through which tension variations will generate attitude errors. As a result, increased

tension variations will increase the values of the measured steady-state orientation.

Figure 4.20(a) also indicates that there is a correlation between tension direction vari-

ation disturbance frequency and level of orientation error. This same phenomenon

was observed in the case of tension magnitude variations. As the tether disturbance

frequency (either magnitude or direction) approaches the closed-loop bandwidth of

the system, tether tension disturbances have a greater effect.

In addition, these data have been superimposed on the frequency response curve

presented in Figure 4.18. The result is shown in Figure 4.20(b). In the figure, the

solid curve represents the theoretical frequency response calculated above and the

symbols, x, o, and +, correspond to average values of the data measured at each of

the experimental frequencies. The figure shows that the laboratory results do confirm

the theoretical analysis. Each of the data points is within 10% of the theoretical curve

and they all lie uniformly above the expected solid curve. This suggests that there is

a gain mismatch between the system model and the laboratory hardware (which was

also observed in the results of the tension magnitude variations).

Torque Magnitude

It is convenient, for mission planning purposes, to determine the effect of various lev-

els of persistent disturbance torques applied to the vehicle with closed-loop attitude
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regulation. This information is useful in the timing of momentum wheel desaturation

maneuvers and the attitude regulation requirements for different phases of the total

mission. The previous experiments were performed with one, constant level of distur-

bance torque applied to the sub-satellite. As was derived in Section 4.2.1, the actual

level of external disturbance torque applied to a tethered vehicle sub-satellite will

increase linearly with time. In designing the previous experiments, it was assumed

that the magnitude of the external disturbance torque could be limited by perform-

ing a momentum dump maneuver for the yaw momentum wheel. The level of the

disturbance was assumed to be a reasonable value given typical mission requirements.

However, to provide a complete description of the effect of lateral tether dynamics, it

is desirable to investigate and quantify the ramifications of various levels of external

disturbance torque. This knowledge will provide mission planners with a good idea

of the necessity and timing of momentum dump maneuvers and will give them the

flexibility to vary the specific torque levels during the course of a mission.

The experiments were performed with the control system in the regulator mode,
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with the on-board fan blowing such that it generated the desired disturbance torque

level, and the tether dynamics simulator was set to provide a tension direction vari-

ation amplitude scaled to a value which corresponds to a lateral modal amplitude of

5% of the tether half-length. The scaled values of the disturbance torque ranged from

5.5 x 10 -5 N-m to 5.5 x 10 -4 N-m. Figure 4.21 shows the results of these experiments.

In the figure, the x symbols correspond to actual, measured data points, and the solid

line corresponds to the straight line fit, in the least squares sense, of the data. As

would be expected, the measured RMS attitude increases with increased disturbance

torque. The moment arm through which tether disturbances act to generate atti-

tude errors is proportional to the level of external disturbance applied to the vehicle.

Therefore, greater levels of disturbance torque can be expected to generate greater

levels of measured attitude errors when the tether tension direction introduces vari-

ations in the amount of force useful (and modeled) for attitude control purposes. As

mentioned previously, Figure 4.21 also provides a convenient guide to determine the

direct effect of persistent levels of external disturbances applied to the vehicle. The

figure shows that for disturbance torque levels less than 0.8 x 10 .3 N-m, the effect of

lateral tether disturbances will not effect the ability of the attitude control system to

regulate the orientation to less than 0.5 arcsec.

4.2.5 Effect of Longitudinal and Lateral Tether Dynamics

The previous two sections discussed the theoretical development and experimental

program which serves to describe the behavior of the closed-loop tethered satellite

attitude control system based on a movable tether attach point when tether tension

(magnitude and direction) variations are considered. The purpose of these sections

(i.e., Sections 4.2.3 and 4.2.4) is to provide the necessary background in order to

consider the effect of realistic tether dynamics on the performance of the control

system. The tether dynamics of interest include the orbital lowest order (mass-spring

mode) longitudinal oscillations and the lowest order lateral (vibrating string) mode.

These dynamics dominate the variations in tether tension as was concluded by He [31].

This section will combine the theoretical development of the tether dynamics model

derived by He [31], with the experimental results that were presented in Sections 4.2.3
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Figure 4.22: Block Diagram of Longitudinal and Lateral Tether Dynamics

and 4.2.4 above.

Tether longitudinal dynamics are wholly described by tension magnitude varia-

tions and tether lateral dynamics are described by a combination of tension direction

variations (which result from the swinging motion of the vibrating string mode) and

tension magnitude variations (which result from the stretching of the tether present

when it vibrates like a string). Figure 4.22 shows a block diagram representation of

the effects of longitudinal and lateral tether dynamics on tethered satellite pointing

errors. The figure shows that the parent spacecraft inertial position (filtered by the

propagation dynamics of the tether) added to the inertial tether attach point posi-

tion (generated from the control law calculation and the sub-satellite translational

dynamics) are combined to form the input to both the longitudinal and lateral tether

dynamics. These tether dynamics convert the end body motions to tether tension

variations. The longitudinal dynamics generate solely tension magnitude variations

and the lateral dynamics create tension direction and magnitude variations. The

total magnitude variation (from the sum of longitudinal and lateral dynamics), dF,

and the total direction variation, d#, are inputs to the transfer functions (derived in

the previous sections) which relate attitude errors to variations in tension magnitude

and direction, respectively. These errors can then be combined to determine the total

expected attitude error due to tether dynamics.
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The equations which should be put into the three tether dynamics boxes (propa-

gation, longitudinal, and lateral) can be found in the dissertation by He [31]. In this

work, Chapter 4 derives, in detail, the necessary transfer functions, and Appendix B

shows a block diagram representation of the tether system. Due to the complexity of

the relationships and in the interest of saving space, the relationships are not repeated

here, and the reader is encouraged to review the material developed by He [31]. The

transfer functions which relate tension magnitude variations and tension direction

variations can be found in Sections 4.2.3 and 4.2.4 above, and are shown in frequency

response form in Figures 4.12 and 4.18. With this information, any tethered satel-

lite configuration can be described mathematically and the pointing errors can be

predicted.

The immediate concern is to predict the behavior of the KITE configuration teth-

ered satellite using the mathematical machinery described above. The tether model

is based on the parameters of a TSS-1 (Tethered Satellite System 1, a proposed Space

Shuttle flight test) tether and is described in detail by He [31]. Combining this infor-

mation and performing the necessary computer simulation in MATRIXx yields the

expected behavior of the tether dynamics. The results of the simulation show that

in the orbital KITE configuration, the tether tension magnitude can be expected

to vary with an amplitude which equals approximately 5% of the nominal tension

value and at a frequency (scaled to reflect the lower bandwidth of the orbital case)

equal to 0.033 Hz. Applying this level of tension magnitude variation (which is the

result of both longitudinal and lateral tension magnitude variations) to the transfer

function relating magnitude variations to attitude errors shows that at the given fre-

quency and amplitude (see Figure 4.13(a)) the expected orientation errors due to the

magnitude variations is less than 0.75 arcsec. In addition, the simulation also shows

that the tether tension direction can be expected to vary with a frequency (scaled

to reflect the lower bandwidth in the orbital case) of 0.01 Hz, with an amplitude

equivalent to a vibrating string mode shape (assumed to be a half sine wave) which

possesses an amplitude which will be less than 5% of the tether half-length. Apply-

ing this level of tension direction variation to the transfer function relating attitude

errors to tension direction variations shows that, for the calculated amplitude and
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frequency, expected attitude errors (see Figure 4.20(a)) are bounded by 1.0 arcsec.

Therefore, the combination of tension magnitude and direction variations which re-

sult from tether longitudinal and lateral dynamics will be bounded by approximately

0.85 arcsec. As a result, it can be concluded that tether dynamics will not effect the

ability of the control algorithm to perform tethered satellite attitude control with an

accuracy greater then 1 arcsec.

4.2.6 Effect of Center of Mass Estimation

The previous sections discussed the case where orbital tether dynamics (in the form of

tension magnitude and direction variations) were simulated with the tether dynamics

simulator. The effect that these dynamics had on the steady-state attitude regulation

of the closed-loop system was quantified. These studies provided insight to the effect

of various external disturbance torque levels on the performance of the full attitude

control scheme. For the case of fine pointing in a disturbance-free environment, a

series of experiments were designed to determine just how effective and necessary

the mass center estimate is in order to implement a useful tethered satellite attitude

control system based on a movable attach point (see Section 4.1.4). While in orbit,

such an orientation control system will be subjected to external disturbances, so it will

prove useful to conduct a similar study for the situation where the tether dynamics

are simulated.

The basic theory behind this question can be understood by modifying the two

previously derived relations for the dynamic behavior of the expected attitude errors

which result from tension magnitude and direction disturbances (see Equations 4.17

and 4.23). These differential equations can be modified to include the effect of turning

off the mass center estimator as follows:

Igl = Fo(x + d) + dF xo, (4.25)

Igl = Fo(x + d) - Foxo-_, (4.26)

where Equation 4.25 refers to the case with tension magnitude variations and Equa-

tion 4.26 refers to the case with tension direction variations. These two equations
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can be recognized as possessing the same form as Equations 4.17 and 4.23, with the

added complication of a second input, d, the mass center offset. The angular re-

sponse, then, is the result of a combination of the tension variation (in magnitude or

direction) and the steady mass center misalignment. It should be noted, that these

equations (4.25 and 4.26) can be expressed in block diagram form similar to those

shown in Figures 4.11 and 4.17, respectively (with a modified transfer function for

D(z) to reflect the compensator without mass center estimation). Once in that form,

a simulation of the system can be performed with MATRIXx System Build for a given

mass center offset and tension variation time history, and the results compared to the

actual observed behavior in the laboratory. This procedure was followed for one set

of tension variation time histories and four different mass center offsets for both cases

(i.e., magnitude and direction variations).

The experiments to test the effectiveness of the mass center estimate in conjunction

with an external disturbance and the simulation of tether dynamics were performed

with the control system described in Section 4.1.4. The ratio of noise covariances

(Rd/Q) was set equal to 5.0 in order to calculate the Kalman Filter gains. This ratio

of noise to process covariances corresponded to the 'best' behavior observed in the

disturbance-free experiments. The external disturbance torque was introduced with

the on-board fan and calibrated such that the scaled torque generated by the fan

would be 5.5 x 10 -s N-m (which is the previously discussed maximum disturbance

torque limit). When simulating tension magnitude variations, the tether dynamics

simulator was adjusted to vary the magnitude 5% of the nominal value at the expected

orbital mass-spring frequency and when simulating tension direction variations, the

simulator was set to correspond to an orbital lateral modal amplitude equivalent to

2% of the tether half-length with a frequency equivalent to the lowest order orbital

string vibration frequency. The results of both the tension magnitude and direction

variation cases of the experiments and simulations are shown in Figures 4.23(a) and

(b), respectively. In the figures, the x symbols correspond to the measured results and

the o symbols correspond to the results obtained from the MATRIXx simulation. The

results show that for both types of tether tension variations, the effect of no mass cen-

ter estimation on steady-state attitude regulation is to increase errors with increasing
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Figure 4.23: Experimental Results without Mass Center Estimation, with Tether

Tension Variations, and with a Constant External Disturbance of 5.5 x 10 .5 N-m

mass center misalignment. This result is shown for both the laboratory experiments

and the computer simulations and is fully expected from the theoretical development.

Physically, for values of misalignment (d) which are less than the nominal, steady-

state offset of the attach point from the mass center (x0), the largest pointing errors

will be introduced by the tension variations (multiplied by the external disturbance

generated offset, x0). However, when the naisalignment (d) is much greater than the

steady-state, nominal value of the attach point (x0), the largest pointing errors will be

generated by the mass center misalignment, d, multiplied by the nominal tether ten-

sion value, F0. Between these two situations, there is a transition region which shows

the effects of both sources of pointing errors. The figures also show that, for cases

where the mass center is in the plane of attach point motion, the tension magnitude

variations have a greater effect on the performance than do the direction variations

(as is exhibited by the larger values of pointing errors). This behavior is also to be

expected. From Equation 4.13, it is clear that tension magnitude variations have a

direct effect on the torque (control plus disturbance) applied to the vehicle, while

tension direction variations effect the total torque through the cosine of the angle,

and for relatively small angles (less than about 20 deg), there is very little change in

the value of the cosine term.
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Finally, it should be noted that for a typical space mission, the mass center un-

certainty will be on the order of 1% of the spacecraft characteristic dimension. The

laboratory tests have been performed with mass center misalignments between 0.01%

and 0.4_0 of the simulator diameter. The results of the previous study show that even

for center of mass misalignments as small as these, significant errors can be introduced

by not estimating the mass center location. It is clear that larger mass center errors

will only increase pointing errors unless mass center estimation is part of a attitude

control algorithm based on a movable tether attach point.

4.2.7 Tension Feedback

The previous results suggest that for the sub-satellite attitude control system based

on a movable tether attach point, the pointing errors introduced by the inclusion

of longitudinal and lateral in-plane tether dynamics will be small enough that a

1 arcsec mission requirement can be met. The linearized equations of motion of a

tethered sub-satellite were derived in Section 3.1.3. Near the end of that section,

it was claimed (with reference to Lemke [42]) that for instances when either q (the

vehicle orientation) is not small, or when dF (the tether tension variation) is on the

same order of magnitude as the nominal tension value, F0, the control algorithm could

be modified to calculate the actual tether attach point offset by scaling the desired

value by the expression shown in Equation 3.85. In an effort to determine the effect

of such a scaling, a series of experiments were performed which judged and quantified

the effect.

The experiments were performed with the on-board fan blowing, the tether dy-

namics simulator operational, and the long-term, high accuracy attitude control sys-

tem in the regulator mode. The fan provided a scaled external disturbance torque

equal to 5.5 x 10 -5 N-m. For the tests with tension magnitude variations, the tether

dynamics simulator was set to vary the tether tension 5% of the nominal value, and for

the tests with tension direction variations, the tether dynamics simulator was set to

vary the tension direction with an amplitude which would result from a lateral mode

amplitude of 5% of the tether half-length. The same control algorithm as discussed

previously was implemented, except that a real-time tension measurement (with the
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load cell discussed in Section 2.1.5) was performed and that measurement was used

to scale the calculated, desired tether attach point with respect to the vehicle mass

center. The results of these tests are summarized in Figure 4.24. Figure 4.24(a)

shows the results for the case with tension magnitude variations and Figure 4.24(b)

shows the results for the case with tension direction variations. In each graph, the

x symbols are the actual data points for the case without the tension scaling, and

the o symbols correspond to the measured data for the tests with the previously dis-

cussed tension scaling. The figures show that the tension scaling had the effect of

lowering the measured steady-state attitude. The results for the case with tension

magnitude variations showed a some improvement (approximately 10%) while the re-

sults for the case with tension direction variations showed much less (less than 2.5%)

improvement. This situation arises from the fact that the load cell measures normal

loads only. Since the tension magnitude variations occur only normal to the tether

attach point, the tension measurement will directly reflect the significant changes in

the tether tension. The tension direction variations, on the other hand, occur parallel

to the load cell and the measurement will only record a cosine of the angle change.

As a result, it is fully expected that the results with magnitude variations would show

much better improvement than those with direction variations. The results for the

tension direction variations can likely be improved by including a direct measurement

of the angle between the tether and the attach point plane of motion. This angle mea-

surement, in conjunction with the normal load cell measurement and a good model

of the tether (a state estimator), will provide even more detailed knowledge of the

tether behavior to the control system. This knowledge can then be incorporated to

design an attitude control system with long term pointing ability which is accurate

to 1 arcsec in environments with greater disturbance torques than those postulated

above.
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Chapter 5

Conclusions

The unique dynamic characteristics of tethered spacecraft make them well suited to

serve as isolation platforms for space-based observatories. For missions requiring bet-

ter than 1 deg long term stability, conventional means of performing the orientation

control of a tethered sub-satellite are ineffective because of the relatively large ten-

sion force applied to the satellite by the tether. It has previously been shown that

generating control torques by varying the tether attach point with respect to the sub-

satellite mass center is not only effective, but also necessary for missions with attitude

stability requirements on the order of 1 arcsec. This dissertation describes experi-

mental results fi'om a laboratory simulation of a proposed Space Shuttle flight test of

a tethered observation platform and relates the results to the orbital configuration to

predict attitude stability.

The flight test mission is to consist of a demonstration of a large angle slew

maneuver (to exhibit the ability to reorient between multiple targets) and long term,

precision attitude control (to exhibit the necessary steady-state attitude stability for

observational purposes). These large dynamic range requirements led to the design

of separate large angle slew and fine pointing control algorithms. Each of the control

schemes generates control moments by varying the sub-satellite tether attach point

with respect to the satellite mass center. The large angle slew controller consists of

a lead-lag compensator with integral control. The fine pointing control algorithm is

a Linear Quadratic Gaussian, full-state feedback control law in conjunction with a
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multi-variable Kalman Filter. The control law includes the integral of the vehicle

orientation angle as an augmented state and an approximation of the dynamics of

the nonlinear actuator (used to position the tether attach point). The Kalman Filter

includes the rotational dynamics of the satellite, plus a mass center estimator which is

used to calculate, in real time, the actual position of the sub-satellite center of mass.

In order to test each of the control algorithms, a laboratory simulator of a tethered

sub-satellite has been designed and constructed. The simulator consists of an air-

bearing vehicle upon which all of the necessary hardware to implement the attitude

control algorithms has been mounted. The hardware consists of a flotation system,

a self-contained power system, a positioning table and stepper motor which serve as

the actuator, a computer and communication system, and a system of sensors. The

air-bearing is suspended in a micro-gravity field (by tilting the table upon which it

floats with respect to local gravity) and connected with a tether to a nearby wall.

An experimental program using the laboratory simulator was designed to test

each of the control algorithms. All of the tests were performed in the regulator mode

(i.e., the zeroing of initial conditions). The experimental results for the large angle

slew maneuver showed that the control law reduced an initial angular displacement

of 21 deg to an RMS value of 0.1 deg. The closed-loop system exhibited 18 percent

overshoot and a natural frequency of approximately 0.04 Hz. Each of these results

compare well with the expected behavior as determined from analysis and computer

simulation. The fine pointing experimental results showed that the initial angular

displacement was reduced to 0.60 arc-sec RMS in less than 100 sec. The closed-loop

bandwidth is approximately 0.03 Hz with overshoot on the order of 5 percent. The

state estimator functioned in such a way that the estimate of the angular orientation

had an RMS value of 0.75 arc-sec, which is sensor limited. These results again agree

quite well with both the theoretical analysis and computer simulation of the closed-

loop system.

Further tests were performed to judge the effect of the magnitude of the estimator

gains, the need for the mass center estimator, and the effect that various actuator

models had on the steady-state control algorithm behavior. The results show that the

magnitude of the estimator gains (i.e., the ratio of sensor and process noise models)
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do have an effect on the system performance. Relatively poor estimator and system

performance were observed for estimator gains which corresponded to too great a

reliance on the measurement or too great a reliance on the model. Estimator gains

based on a proper balance between sensor and process noise exhibited acceptable

estimator performance. In addition, if the estimator root locations corresponded to

faster response times than the control root locations, the closed-loop system behaved

quite well. The results of the tests of the mass center estimator showed that mass

center estimation is necessary for a precision tethered satellite attitude control system

based on a movable tether attach point. The magnitude of the effect of not estimating

the mass center location was found to depend on the magnitude of the estimator gains

and the misalignment between the assumed and the actual mass center locations. The

results related to the model of the nonlinear actuator emphasized the fact that care

must be taken when modeling nonlinear devices with linear equations. All of the

tests verified that closed-loop behavior could be predicted analytically, however, the

estimator performance varied considerably.

In the orbital configuration, control moments can be generated by varying the

tether attach point for the pitch and roll axes only. It has been proposed that sec-

ular yaw disturbance torques can be controlled with the aide of a momentum wheel

mounted parallel to the tether axis. As the speed of the momentum wheel increases,

the wheel angular momentum will generate a roll disturbance torque which needs to

be balanced by a steady-state offset of the tether attach point with respect to the

mass center. As the natural dynamics of the tether induce tension magnitude and

direction variations, disturbance torques can be generated. To test the ability of the

fine pointing control law to reject these disturbances, a tether dynamics simulator

was designed and constructed. A fan is used to apply a constant disturbance to the

satellite simulator (which is the magnitude of the orbital roll torque limited by a

periodic desaturation maneuver) and tension magnitude and direction variations are

generated with the tether dynamics simulator.

In the steady-state, longitudinal tether dynamics will converge to the mass-spring

mode of the tether/sub-satellite system and can be characterized by tension magni-

tude variations. For the case of lateral tether dynamics, the steady-state behavior of
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the tether will approach the lowest natural frequency and mode shape of a vibrating

string connected between two fixed end points. This behavior can be characterized

by variations of the tether tension magnitude and direction. As a result, the tether

dynamics simulator was employed to generate tension magnitude and direction varia-

tions of the force applied by the tether to the air-bearing vehicle. Experimental data

show that if the tension magnitude variations are less than about 7.5% of the nominal

tension value, the measured RMS attitude of the sub-satellite is less than 1 arcsec.

Results of additional experiments show that for tension directional variations which

correspond to a lateral modal amplitude which is less than about 5% of the tether

half-length, the control algorithm can regulate the orientation to less than 1 arcsec

RMS.

The complete effect of tether dynamics on the behavior of the tethered satellite

attitude control system is the combination of the longitudinal and lateral motions

of the tether. Mathematical models and computer simulations of the total tether

dynamics show that steady-state tension variations in the orbital case are expected

to be less than 5% of the nominal value (which results from the relatively large

damping inherent in long, space tethers). Therefore, it can be concluded that the

combination of longitudinal tether dynamics and that portion of the lateral dynamics

which couples into tension magnitude variations should not effect the ability of the

control algorithm to regulate the sub-satellite orientation with an accuracy better than

1 arcsec. Also, computer simulations show that the expected orbital tether behavior

in the steady state will be characterized by direction variations which correspond to

lateral modal amplitudes which are well under 1% of the tether half-length. Based

on these observations, it can be concluded that lateral tether dynamics will not effect

the ability of the control algorithm to regulate the vehicle orientation to less than

1 arcsec.

Further, additional experimental data show that, for tension magnitude variations

of 5%, less than 1 arcsec orientation regulation can be achieved for disturbance torque

levels less than about 1 x 10 -3 N-m. On orbit, this roll disturbance torque level will

be reached only after 800 orbits so that a momentum wheel desaturation maneuver

will need to be initiated approximately every 40 days. In addition, for direction
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variations which correspond to modal amplitudes equal to 5% of the tether half-length,

roll disturbance torque magnitudes less than about 1 x 10 -a N-m did not degrade

performance above about 0.5 arcsec. Once again, in orbit, this level of disturbance

torque is generated after about 800 orbits. Hence, limiting the wheel speed after 40

days of flight will ensure that both tether tension and direction variations will have

a small enough effect that 1 arcsec accuracy can easily be achieved.

Additional experiments were performed to judge the need for mass center estima-

tion and the effect of tension scaling for the cases with roll disturbance torques and

tether tension variations active. Experimental results show that mass center estima-

tion is necessary for arcsec regulation for the following cases: 5% tension magnitude

variations in addition to mass center misalignment greater than 3 ram, and 2% tether

half-length direction variations coupled with 10 mm misalignment in the mass center.

Data from the experiments which tested the effectiveness of tension measurement

and feedback show that for magnitude variations, tension feedback can achieve ap-

proximately 10% improvement in the steady-state performance, while for direction

variations, feedback of tension will yield less than 2.5% improvement in steady-state

accuracy. If even better results are desired, an estimator can be designed (in conjunc-

tion with a load cell measurement and a measurement of the relative angle between

the tether and sub-satellite) to determine the state of the tether. With this additional

state information, the effect of tether dynamics can be accounted for in the control

algorithm with the aim of achieving better performance. Based on the laboratory ex-

perience with tension feedback, it appears that only a relatively small improvmnent

will result. These findings suggest that the added complexity and cost of the modified

control algorithm and additional measurement devices are not warranted.





Appendix A

FORTRAN Programs

A.1 Fine Pointing Control Program

integer*2 isamp,ich 1,istep

character name*10,formt*20

integer img,nrows,ncols,maxt

double precision data( 1100,4),11,12,13,k 1,k2,k3,k4,xb 1 ,xb2,xb3

double precision volts,pos,e,sum

common /cons/itime,ich 1,volts

common /gains/ll,12,13,xbl,xb2,xb3,kl,k2,k3,k4

common /dat/data,pos,e,sum

external cloop

C

21

CONSTANT DEFINITIONS

kl= 9.082"39.37'1000.

k2=20.4182"39.37" 1000.

k3= 1.2521'39.37"1000.

k4=0.3003

11=0.5632

12=0.4566

13=-1.3218

isamp=500

120
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itime=0

xbl=0.0

xb2=0.0

xb3=0.0

e=0.0

ichl=l

volts=20./4096.

pos=0.0

C INPUT TIME FOR RUN

write(*,3)

format(5x,'Input max time= = = >')

read(*,*) maxt

maxt= (maxt* 1000/isamp)+ 1

C INITIALIZE STEPPER MOTOR

call init

C USE 80130 TO RUN INTERRUPT DRIVEN CONTROL LOOP

call clock(isamp,cloop )

C

10

LOOP UNTIL SPECIFIED TIME ttAS ELAPSED

continue

if(itime.ge.maxt) goto 15

goto 10

C

15

STOP CLOCK AND RETURN STEPPER MOTOR TO ZERO POSITION

call clock(0,cloop)

istep=nint(-pos* 1000)

call step(istep)
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C

101

C

STORE DATA ON DISK

do 101 i=l,itime

data(i,1)=data(i,1)

data(i,2)=3600.*57.3*dat a(i,2)

data(i,3)=3600.*57.3*data(i,3)

data(i,4)=data(i,4)

continue

ncols=4

nrows=i

img=0

name='r'

formt='(4fl5.5)'

open(4,file =name,status='new')

write(4,'(al0,3i5,a20)') name,nrows,ncols,img,formt

write(4,formt) ((data(ij),i= 1,nrows),j= 1,ncols)

close(4)

end

subroutine cloop

integer*2 ich 1,adcon,iang,nstep,count

double precision data(llOO,4),ll,12,13,kl,k2,k3,k4

double precision xbl,xb2,xb3,xhl,xh2,xh3,yn

double precision volts,pos,e,unl,t

common /con s/itime,ich 1,volts

common /gains/11,12,13,xb 1,xb2,xb 3,k 1,k2,k3,k4

common /dat/data,pos,e

C TAKE MEASUREMENT AND PERFORM MEASUREMENT UPDATE

iang=adcon(ichl)

yn=-.0004*(volts*float(iang)-10.)

xhl=xb l+11*(yn-xb 1)
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xh2=xb2+12*(yn-xbl)

xh3=xb3+13*(yn-xbl)

C CALCULATE CONTROL AND MOVE STEPPER MOTOR

istep =hint ((-k l*xh 1-k2*xh2-k3*e+k4* 1000.*pos)- 1000.*pos)

if(istep.gt.1000) nstep= 1000

if(istep.lt.- 1000) nstep=-1000

if(istep.lt.1000.and.istep.gt.- 1000) nstep=istep

if(pos.ge.2.5.and.nstep.gt.0) nstep=0

if(pos.le.-2.5.and.nstep.lt.0) nstep=0

call step(nstep)

C SAVE DATA

unl=pos

pos=pos+nstep*.001

itime=itime+ 1

data(itime,1)=pos

data(itime,2)=yn

data(itime,3)=xb 1

data(itime,4)=xh3

C

C

PERFORM TIME UPDATE

xbl=xhl+ .5*xh2-.0083*xh3+.0254*(.004 l*pos+.0042*un 1)

xb2=xh2-.0333*xh3+.0254*(.0211*pos+.0122*un1)

xb3=xh3

e=.5*xhl+e

end
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A.2 Subroutine For Laboratory Simulator

C

C

C

C

C

C

C

C

C

SUBROUTINE EQNS(T,Y,DY)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION Y(6),DY(6)

COMMON/PLIST/MB,K,L,V1,V2,DVI,DV2,G,I,X,E,BL,BR,BT,DIST

MB = sub-satellite mass, K = tether spring constant, L = tether length,

V1 (V2) = longitudinal (lateral) displacement of tether suspension point,

DV1 (DV2) = longitudinal (lateral) velocity of tether suspension point,

G = micro-gravity acceleration, I = sub-satellite moment of inertia,

X = attach point displacement w.r.t, assumed mass center, E = misalignment

between assumed and actual mass center, BL (BR) = linear (rotational)

damping coefficient of air-bearing suspension, BT = coefficient of

damping for tether, DIST = external disturbance torque

C Calculate tether forces

SD=SIN(Y(3))

CD=COS(Y(3))

Pl=Y( 1)-VI-(X+E)*S3

P2=Y(2)-V2+(X+E)*C3

MP=SQRT(PI*PI+P2*P2)

IF (MP.LE.0.000001) MP=0.000001

DP 1=Y(4)-DV1 +(X+E)*CD*Y(6)

DP2=Y(5)-DV2+(X+E)*SD*Y(6)

FS=K*(L-MP)

FD=-BT*(PI*DPI+P2*DP2)/MP

C Calculate Generalized Forces

FI=MB*G-(B*Y(4))+((FS+FD)*P1/MP)

F2=-(B*Y(5))+((FS+FD)*P2/MP)

FD=-(BR*Y(6))-((X+ E)*(FS +FD)*(P 1'C3+ P2*SD)/MP)
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C Calculate state derivatives

DY(1)=Y(4)

DY(2)=Y(5)

DY(3)=Y(6)

DY(4)--F1/MB

DY(5)=F2/MB

DY(6)=(F3+DIST)/I

RETURN

END
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